欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

Ermüdungsrisse sind im Allgemeinen das Ergebnis periodischer plastischer Verformung in lokalen Bereichen. Ermüdung ist definiert als ?Versagen unter wiederholter Belastung oder anderen Arten von Belastungsbedingungen, und dieses Belastungsniveau reicht nicht aus, um ein Versagen zu verursachen, wenn es nur einmal angewendet wird.“ Diese plastische Verformung entsteht nicht aufgrund der theoretischen Belastung des idealen Bauteils, sondern weil die Bauteiloberfl?che tats?chlich nicht erfasst werden kann.

August W?hler ist der Pionier der Ermüdungsforschung und stellt eine empirische Methode vor. Zwischen 1852 und 1870 untersuchte W ?hler den fortschreitenden Ausfall von Eisenbahnachsen. Er baute den in Bild 1 gezeigten Prüfstand. Dieser Prüfstand erm?glicht es, zwei Eisenbahnachsen gleichzeitig zu drehen und zu biegen. W?hler zeichnete den Zusammenhang zwischen der Nennspannung und der zum Versagen führenden Lastspielzahl auf, das sp?ter W?hlerdiagramm genannt wird. Jede Kurve wird immer noch als aw ? hler Linie bezeichnet. Das Sn-Verfahren ist auch heute noch das am weitesten verbreitete Verfahren. Ein typisches Beispiel dieser Kurve ist in Abbildung 1 dargestellt.

Statik des Experiments von August W?hler, die Ihnen zeigt, wie sich die 4 Elemente auf Fatigue Crack 2 auswirken
Bild 1 Rotations-Biege-Ermüdungsversuch von W ? hler

Durch die w ?hler Linie k?nnen mehrere Effekte beobachtet werden. Zun?chst bemerken wir, dass die W?hlerlinie unterhalb des übergangspunktes (ca. 1000 Zyklen) ungültig ist, da die Nennspannung hier elastoplastisch ist. Wir werden sp?ter zeigen, dass Ermüdung durch die Freisetzung von plastischer Scherspannungsenergie verursacht wird. Daher gibt es keine lineare Beziehung zwischen Spannung und Dehnung vor dem Bruch und kann nicht verwendet werden. Zwischen dem übergangspunkt und der Ermüdungsgrenze (etwa 107 Zyklen) ist die Sn-basierte Analyse gültig. Oberhalb der Ermüdungsgrenze nimmt die Steigung der Kurve stark ab, daher wird dieser Bereich oft als Bereich der ?unendlichen Lebensdauer“ bezeichnet. Dies ist jedoch nicht der Fall. Beispielsweise hat eine Aluminiumlegierung keine unbegrenzte Lebensdauer, und selbst Stahl hat keine unbegrenzte Lebensdauer unter Belastung mit variabler Amplitude.

Mit dem Aufkommen der modernen Verst?rkungstechnologie k?nnen Menschen Ermüdungsrisse genauer untersuchen. Wir wissen heute, dass die Entstehung und Ausbreitung von Ermüdungsrissen in zwei Phasen eingeteilt werden kann. In der Anfangsphase breitet sich der Riss in einem Winkel von etwa 45 Grad relativ zur aufgebrachten Last aus (entlang der Linie der maximalen Schubspannung). Nach dem überqueren von zwei oder drei Korngrenzen ?ndert sich seine Richtung und erstreckt sich entlang der Richtung von etwa 90 Grad relativ zur aufgebrachten Last. Diese beiden Stadien werden als Riss Stufe I und Riss Stufe II bezeichnet, wie in Abbildung 2 dargestellt.

Statik des Experiments von August W?hler, die Ihnen zeigt, wie sich die 4 Elemente auf Fatigue Crack 3 auswirken
Abbildung 2 Schematische Darstellung des Risswachstums in Stufe I und Stufe II

Wenn wir einen Riss im Stadium I bei starker Vergr??erung beobachten, k?nnen wir sehen, dass die Wechselspannung zur Bildung eines durchgehenden Gleitbandes entlang der maximalen Scherebene führt. Diese Gleitb?nder gleiten ?hnlich wie ein Kartenspiel hin und her, was zu unebenen Oberfl?chen führt. Die konkave Oberfl?che bildet schlie?lich einen ?knospenden“ Riss, wie in Abbildung 3 dargestellt. In Phase I dehnt sich der Riss in diesem Modus aus, bis er auf die Korngrenze trifft, und stoppt vorübergehend. Wenn den benachbarten Kristallen genügend Energie zugeführt wird, wird der Prozess fortgesetzt.

Statik des Experiments von August W?hler, die Ihnen zeigt, wie sich die 4 Elemente auf Fatigue Crack 4 auswirken
Abbildung 3 Schematische Darstellung eines kontinuierlichen Gleitbandes

Nach dem überqueren von zwei oder drei Korngrenzen tritt die Richtung der Rissausbreitung nun in den Phase-II-Modus ein. In diesem Stadium haben sich die physikalischen Eigenschaften der Rissausbreitung ge?ndert. Der Riss selbst stellt ein Makrohindernis für den Spannungsfluss dar und verursacht eine hohe plastische Spannungskonzentration an der Rissspitze. Wie in Abbildung 4 gezeigt. Es ist zu beachten, dass sich nicht alle Risse im Stadium I bis zum Stadium II entwickeln.

Statik des Experiments von August W?hler, die Ihnen zeigt, wie sich die 4 Elemente auf Fatigue Crack 5 auswirken
Abb4

Um den Ausbreitungsmechanismus des Stadiums II zu verstehen, müssen wir die Situation des Rissspitzenquerschnitts w?hrend des Spannungszyklus betrachten. Wie in Abbildung 5 gezeigt. Der Ermüdungszyklus beginnt, wenn die Nennspannung am Punkt ?a“ liegt. Wenn die Spannungsintensit?t zunimmt und Punkt ?B“ passiert, stellen wir fest, dass sich die Rissspitze ?ffnet, was zu einer lokalen plastischen Scherverformung führt, und der Riss sich bis zu Punkt ?C“ im ursprünglichen Metall ausdehnt. Wenn die Zugspannung durch den ?d“-Punkt abnimmt, beobachten wir, dass sich die Rissspitze schlie?t, aber die dauerhafte plastische Verformung hinterl?sst eine einzigartige Zacke, die sogenannte ?Schnittlinie“. Wenn der gesamte Zyklus am ?e“-Punkt endet, beobachten wir, dass der Riss nun die ?Da“-L?nge vergr??ert hat und zus?tzliche Schnittlinien gebildet hat. Es versteht sich nun, dass der Bereich des Risswachstums proportional zum Bereich der aufgebrachten elastisch-plastischen Rissspitzendehnung ist. Ein gr??erer Zyklusbereich kann ein gr??eres Da bilden.

Statik des Experiments von August W?hler, die Ihnen zeigt, wie sich die 4 Elemente auf Fatigue Crack 6 auswirken
Abb. 5 Schematische Darstellung der Rissausbreitung im Stadium II

Faktoren, die die Wachstumsrate von Ermüdungsrissen beeinflussen

Der Einfluss folgender Parameter auf die Ermüdungsrisswachstumsrate wird untersucht und konzeptionell erkl?rt:

1Scherspannung

Aus dem Diagramm ist ersichtlich, dass bei der periodischen ?nderung der St?rke der Nennspannung eine gewisse ?Menge“ an Schubspannung freigesetzt wird. Und je gr??er die Bandbreite der Spannungs?nderungen, desto gr??er die freigesetzte Energie. Anhand der W?hlerkurve in Bild 1 k?nnen wir erkennen, dass die Ermüdungslebensdauer exponentiell mit zunehmendem Lastspielbereich abnimmt.

Statik des Experiments von August W?hler, die Ihnen zeigt, wie sich die 4 Elemente auf Fatigue Crack 7 auswirken
Abb. 6 Elastoplastische Spannung und Dehnung entlang der Gleitfl?che und an der Risswurzel

2 durchschnittliche Belastung

Die durchschnittliche Spannung (Eigenspannung) ist auch ein Faktor, der die Ermüdungsbruchrate beeinflusst. Wenn die Ausdehnungsspannung auf den Riss der Phase II ausgeübt wird, wird der Riss konzeptionell gezwungen, sich zu ?ffnen, sodass jeder Spannungszyklus eine signifikantere Wirkung hat. Wenn im Gegensatz dazu die durchschnittliche Druckspannung angelegt wird, wird der Riss gezwungen, sich zu schlie?en, und jeder Spannungszyklus muss die Vordruckspannung überwinden, bevor sich der Riss weiter ausdehnen kann. ?hnliche Konzepte gelten auch für Risse im Stadium I.

3 Oberfl?chenbeschaffenheit

Da Ermüdungsrisse normalerweise zuerst an der Oberfl?che von Bauteilen mit Defekten auftreten, beeinflusst die Qualit?t der Oberfl?che die Wahrscheinlichkeit des Auftretens von Rissen erheblich. Obwohl die meisten Materialtestmuster hochglanzpoliert sind, erreichen sie auch die beste Ermüdungslebensdauer. Tats?chlich k?nnen die meisten Komponenten nicht mit den Proben verglichen werden, also müssen wir die Ermüdungseigenschaften modifizieren. Die Oberfl?chenbeschaffenheit hat einen gr??eren Einfluss auf die Ermüdung von Komponenten, die Belastungszyklen mit geringer Amplitude ausgesetzt sind.

Statik des Experiments von August W?hler, die Ihnen zeigt, wie sich die 4 Elemente auf Fatigue Crack 8 auswirken
Bild 7 Schematische Darstellung des Einflusses der Zyklusfolge Der Einfluss der Oberfl?chengüte l?sst sich durch Modellierung ausdrücken, dh durch Multiplikation der W?hlerlinie mit dem Oberfl?chenkorrekturparameter an der Ermüdungsgrenze.

4 Oberfl?chenbehandlung

Oberfl?chenbehandlung kann verwendet werden, um die Ermüdungsbest?ndigkeit von Komponenten zu verbessern. Der Zweck der Oberfl?chenbehandlung besteht darin, Druckeigenspannungen auf der Oberfl?che zu bilden. W?hrend der Periode mit niedriger Amplitude ist die Spannung auf der Oberfl?che offensichtlich gering und beh?lt sogar den Kompressionszustand bei. Daher kann die Ermüdungslebensdauer signifikant verl?ngert werden. Wie bereits erw?hnt, gilt diese Situation jedoch nur für Komponenten, die Belastungszyklen mit geringer Amplitude ausgesetzt sind. Wenn eine Periode mit hoher Amplitude angewendet wird, wird die Vorkomprimierung durch die Periode mit hoher Amplitude überwunden, und ihre Vorteile gehen verloren. Wie bei der Oberfl?chenqualit?t kann der Einfluss der Oberfl?chenbehandlung durch Modellierung gezeigt werden.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht ver?ffentlicht. Erforderliche Felder sind mit * markiert.

婷婷人妻少妇激情在线-欧美日韩人体艺术一区二区| 日韩精品中文在线观看一区-亚洲bt欧美bt精品| 亚洲国产视频不卡一区-激情欧美视频一区二区| 国产一区二区无套内射-国内精品久久久久久久齐pp| 黄片黄片在线免费观看-激情综合网激情五月俺也去| 国产精品久久久精品一区-99久久免费精品国产男女性高好| 亚洲女人黄色录像一区-日韩av电影在线免费看| 婷婷亚洲欧美综合丁香亚洲-超刺激国语对白在线视频| 免费av一区在线观看-国产精品视频高潮流白浆视频免费| 中文字幕日本在线资源-国产+成+人+亚洲欧洲自线| 欧美精品午夜一二三区-a屁视频一区二区三区四区| 亚洲国产欧美日韩不卡-熟妇激情一区二区三区| 亚洲综合av一区二区三区-高潮又爽又黄无遮挡激情视频| 久久精品亚洲国产av久-国产精品视频一区二区免费| 天天干天天干2018-91人妻人人澡人爽精品| 三级a级一级大片在线观看-日韩av有码免费观看| 亚洲av乱码一区二区-九九免费在线观看视频| 国产传媒中文字幕在线观看-午夜福利视频在线播放观看| mm在线精品视频在线观看-欧美国产日韩在线一区二区三区| 国产综合日韩激情在线-日韩精品人妻一专区二区三区| mm在线精品视频在线观看-欧美国产日韩在线一区二区三区| 人妻丝袜中文字幕在线视频-亚洲成av人片一区二区三区| 极品人妻av在线播放-久久精品视频一区二区三区| 国产aa视频一区二区三区-国产精品久久久久久久毛片动漫| 欧美日韩黑人在线播放-51在线精品免费视频观看| 熟女少妇免费一区二区-麻豆一区二区三区免费在线观看| 亚洲av高清一区三区三区-久久人妻夜夜做天天爽| av一区免费在线观看-中文字幕日韩国产精品视频| 亚洲av综合av一区东京热-黄页免费视频网站在线观看| 少妇人妻无码久久久久久-综合图片亚洲网友自拍| 99久热精品免费观看四虎-亚洲天堂精品视频在线| 91亚洲美女视频在线-熟妇人妻精品一区二区三区蜜臀| 国产黄片在现免费观看-色老板最新在线播放一区二区三区| 久久99热这里都是精品啊-国产成人亚洲精品无码aV| 精品国产综合一区二区三区-蜜臀一区二区三区刺激视频| 国产一区二区无套内射-国内精品久久久久久久齐pp| 少妇一区二区三区粉嫩av-国产精品区久久久久久久| 青木玲高清中文字幕在线看-视频在线免费观看你懂的| 99精品只有久久精品免费-蜜臀一区二区三区精品久久久| 在线免费观看黄片喷水-国产精品白丝网站在线观看| 精品亚洲卡一卡2卡三卡乱码-一区三区二插女人高潮在线观看|