{"id":21224,"date":"2022-07-04T09:49:47","date_gmt":"2022-07-04T01:49:47","guid":{"rendered":"https:\/\/www.meetyoucarbide.com\/?p=21224"},"modified":"2022-07-04T09:49:51","modified_gmt":"2022-07-04T01:49:51","slug":"how-much-does-machining-allowance-affect-machining-accuracy","status":"publish","type":"post","link":"https:\/\/www.meetyoucarbide.com\/how-much-does-machining-allowance-affect-machining-accuracy\/","title":{"rendered":"How much does machining allowance affect machining accuracy?"},"content":{"rendered":"
With the continuous improvement of the quality requirements of machined products, people have invested a lot of time and energy in exploring methods and measures to improve product quality, but they have ignored the impact of machining allowance on product quality in the process of machining, and believe that only having allowance in the process of machining will not have much impact on product quality. In the actual machining process of mechanical products, it is found that the machining allowance of parts directly affects the product quality.<\/p>\n\n\n\n
If the machining allowance is too small, it is difficult to eliminate the residual form and position errors and surface defects in the previous process; If the allowance is too large, it will not only increase the workload of machining, but also increase the consumption of materials, tools and energy. What is more serious is that the heat generated by cutting a large amount of machining allowance during the machining process will deform the parts, increase the machining difficulty of the parts and affect the product quality. Therefore, it is necessary to strictly control the machining allowance of the parts.<\/p>\n\n\n\n
Machining allowance refers to the thickness of the metal layer cut from the machined surface during machining. <\/p>\n\n\n\n
Machining allowance can be divided into process machining allowance and total machining allowance. Process machining allowance refers to the thickness of the metal layer cut off by a surface in a process, which depends on the difference between the dimensions of the adjacent processes before and after the process. Total machining allowance refers to the total thickness of the metal layer removed from a certain surface during the whole machining process of the part from blank to finished product,which is, the difference between the blank size on the same surface and the part size. The total machining allowance is equal to the sum of the machining allowance of each process.Machining allowance in a drawing are shown in Figure 1.<\/p>\n\n\n\n
In the figure 1, the minimum machining allowance is the difference between the minimum process size of the previous process and the maximum process size of this process. The maximum machining allowance refers to the difference between the maximum process size of the previous process and the minimum process size of this process.<\/p>\n\n\n\n
The variation range of process machining allowance (the difference between the maximum machining amount and the minimum machining allowance) is equal to the sum of the dimensional tolerances of the previous process and the current process. The tolerance zone of process dimension is generally specified in the entry direction of parts. For shaft parts, the basic size is the maximum process size, while for holes, it is the minimum process size.<\/p>\n\n\n\n