{"id":1711,"date":"2019-05-22T02:47:44","date_gmt":"2019-05-22T02:47:44","guid":{"rendered":"http:\/\/www.meetyoucarbide.com\/single-post-raiders-about-interpret-high-resolution-electron-micrographs-come\/"},"modified":"2020-05-04T13:12:04","modified_gmt":"2020-05-04T13:12:04","slug":"raiders-about-interpret-high-resolution-electron-micrographs-come","status":"publish","type":"post","link":"https:\/\/www.meetyoucarbide.com\/vi\/raiders-about-interpret-high-resolution-electron-micrographs-come\/","title":{"rendered":"Raiders v\u1ec1 gi\u1ea3i th\u00edch c\u00e1c vi s\u00f3ng \u0111i\u1ec7n t\u1eed \u0111\u1ed9 ph\u00e2n gi\u1ea3i cao \u0111\u1ebfn!"},"content":{"rendered":"
\n
\n
K\u00ednh hi\u1ec3n vi \u0111i\u1ec7n t\u1eed truy\u1ec1n qua c\u00f3 \u0111\u1ed9 ph\u00e2n gi\u1ea3i cao (HRTEM ho\u1eb7c HREM) l\u00e0 \u0111\u1ed9 t\u01b0\u01a1ng ph\u1ea3n pha (\u0111\u1ed9 t\u01b0\u01a1ng ph\u1ea3n c\u1ee7a h\u00ecnh \u1ea3nh k\u00ednh hi\u1ec3n vi \u0111i\u1ec7n t\u1eed c\u00f3 \u0111\u1ed9 ph\u00e2n gi\u1ea3i cao \u0111\u01b0\u1ee3c h\u00ecnh th\u00e0nh b\u1edfi s\u1ef1 l\u1ec7ch pha gi\u1eefa s\u00f3ng chi\u1ebfu t\u1ed5ng h\u1ee3p v\u00e0 s\u00f3ng nhi\u1ec5u x\u1ea1, N\u00f3 \u0111\u01b0\u1ee3c g\u1ecdi l\u00e0 k\u00ednh t\u01b0\u01a1ng ph\u1ea3n pha. \u0111\u01b0a ra m\u1ed9t s\u1ef1 s\u1eafp x\u1ebfp nguy\u00ean t\u1eed c\u1ee7a h\u1ea7u h\u1ebft c\u00e1c v\u1eadt li\u1ec7u tinh th\u1ec3.<\/div>\n
High-resolution transmission electron microscopy began in the 1950s. In 1956, JWMenter directly observed parallel strips of 12 \u00c5 copper phthalocyanine with a resolution of 8 \u00c5 transmission electron microscope, and opened high-resolution electron microscopy. The door to surgery. In the early 1970s, in 1971, Iijima Chengman used a TEM with a resolution of 3.5 \u00c5 to capture the phase contrast image of Ti2Nb10O29, and directly observed the projection of the atomic group along the incident electron beam. At the same time, the research on high resolution image imaging theory and analysis technology has also made important progress. In the 1970s and 1980s, the electron microscope technology was continuously improved, and the resolution was greatly improved. Generally, the large TEM has been able to guarantee a crystal resolution of 1.44 \u00c5 and a dot resolution of 2 to 3 \u00c5. HRTEM can not only observe the lattice fringe image reflecting the interplanar spacing, but also observe the structural image of the atom or group arrangement in the reaction crystal structure. Recently, Professor David A. Muller’s team at Cornell University in the United States used laminated imaging technology and an independently developed electron microscope pixel array detector to achieve a spatial resolution of 0.39 \u00c5 under low electron beam energy imaging conditions.<\/div>\n
Hi\u1ec7n nay, k\u00ednh hi\u1ec3n vi \u0111i\u1ec7n t\u1eed truy\u1ec1n qua th\u01b0\u1eddng c\u00f3 kh\u1ea3 n\u0103ng th\u1ef1c hi\u1ec7n HRTEM. C\u00e1c k\u00ednh hi\u1ec3n vi \u0111i\u1ec7n t\u1eed truy\u1ec1n qua \u0111\u01b0\u1ee3c ph\u00e2n th\u00e0nh hai lo\u1ea1i: \u0111\u1ed9 ph\u00e2n gi\u1ea3i cao v\u00e0 ph\u00e2n t\u00edch. TEM \u0111\u1ed9 ph\u00e2n gi\u1ea3i cao \u0111\u01b0\u1ee3c trang b\u1ecb m\u1ed9t m\u1ea3nh c\u1ef1c m\u1ee5c ti\u00eau c\u00f3 \u0111\u1ed9 ph\u00e2n gi\u1ea3i cao v\u00e0 k\u1ebft h\u1ee3p m\u00e0ng ng\u0103n, l\u00e0m cho g\u00f3c nghi\u00eang c\u1ee7a b\u1ea3ng m\u1eabu nh\u1ecf, d\u1eabn \u0111\u1ebfn h\u1ec7 s\u1ed1 quang sai h\u00ecnh c\u1ea7u m\u1ee5c ti\u00eau nh\u1ecf h\u01a1n; trong khi TEM ph\u00e2n t\u00edch \u0111\u00f2i h\u1ecfi m\u1ed9t l\u01b0\u1ee3ng l\u1edbn h\u01a1n cho c\u00e1c ph\u00e2n t\u00edch kh\u00e1c nhau. G\u00f3c nghi\u00eang c\u1ee7a giai \u0111o\u1ea1n m\u1eabu, do \u0111\u00f3, c\u1ef1c c\u1ee7a \u1ed1ng k\u00ednh v\u1eadt k\u00ednh \u0111\u01b0\u1ee3c s\u1eed d\u1ee5ng kh\u00e1c v\u1edbi lo\u1ea1i c\u00f3 \u0111\u1ed9 ph\u00e2n gi\u1ea3i cao, do \u0111\u00f3 \u1ea3nh h\u01b0\u1edfng \u0111\u1ebfn \u0111\u1ed9 ph\u00e2n gi\u1ea3i. Nh\u00ecn chung, TEM \u0111\u1ed9 ph\u00e2n gi\u1ea3i cao 200 kev c\u00f3 \u0111\u1ed9 ph\u00e2n gi\u1ea3i 1,9, trong khi TEM ph\u00e2n t\u00edch 200 kev c\u00f3 2,3. Nh\u01b0ng \u0111i\u1ec1u n\u00e0y kh\u00f4ng \u1ea3nh h\u01b0\u1edfng \u0111\u1ebfn h\u00ecnh \u1ea3nh ph\u00e2n t\u00edch TEM ch\u1ee5p \u1ea3nh \u0111\u1ed9 ph\u00e2n gi\u1ea3i cao.<\/div>\n

\"\"<\/p>\n

As shown in Fig. 1, the optical path diagram of the high-resolution electron microscopy imaging process, when an electron beam with a certain wavelength (\u03bb) is incident on a crystal with a crystal plane spacing d, the Bragg condition (2dsin \u03b8 = \u03bb) is satisfied, A diffracted wave is generated at an angle (2\u03b8). This diffracted wave converges on the back focal plane of the objective lens to form a diffraction spot (in an electron microscope, a regular diffraction spot formed on the back focal plane is projected onto the phosphor screen, which is a so-called electron diffraction pattern). When the diffracted wave on the back focal plane continues to move forward, the diffracted wave is synthesized, an enlarged image (electron microscopic image) is formed on the image plane, and two or more large objective lens pupils can be inserted on the back focal plane. Wave interference imaging, called high-resolution electron microscopy, is called a high-resolution electron microscopic image (high-resolution microscopic image).<\/div>\n
Nh\u01b0 \u0111\u00e3 \u0111\u1ec1 c\u1eadp \u1edf tr\u00ean, h\u00ecnh \u1ea3nh k\u00ednh hi\u1ec3n vi \u0111i\u1ec7n t\u1eed c\u00f3 \u0111\u1ed9 ph\u00e2n gi\u1ea3i cao l\u00e0 h\u00ecnh \u1ea3nh hi\u1ec3n vi t\u01b0\u01a1ng ph\u1ea3n pha \u0111\u01b0\u1ee3c h\u00ecnh th\u00e0nh b\u1eb1ng c\u00e1ch truy\u1ec1n ch\u00f9m tia truy\u1ec1n qua c\u1ee7a m\u1eb7t ph\u1eb3ng ti\u00eau c\u1ef1 c\u1ee7a th\u1ea5u k\u00ednh v\u1eadt k\u00ednh v\u00e0 m\u1ed9t s\u1ed1 ch\u00f9m tia nhi\u1ec5u x\u1ea1 qua con ng\u01b0\u01a1i m\u1ee5c ti\u00eau, do s\u1ef1 k\u1ebft h\u1ee3p pha c\u1ee7a ch\u00fang. Do s\u1ef1 kh\u00e1c bi\u1ec7t v\u1ec1 s\u1ed1 l\u01b0\u1ee3ng ch\u00f9m tia nhi\u1ec5u x\u1ea1 tham gia v\u00e0o h\u00ecnh \u1ea3nh, h\u00ecnh \u1ea3nh c\u00f3 \u0111\u1ed9 ph\u00e2n gi\u1ea3i cao c\u1ee7a c\u00e1c t\u00ean kh\u00e1c nhau \u0111\u01b0\u1ee3c thu \u0111\u01b0\u1ee3c. Do c\u00e1c \u0111i\u1ec1u ki\u1ec7n nhi\u1ec5u x\u1ea1 v\u00e0 \u0111\u1ed9 d\u00e0y m\u1eabu kh\u00e1c nhau, c\u00e1c vi s\u00f3ng \u0111i\u1ec7n t\u1eed c\u00f3 \u0111\u1ed9 ph\u00e2n gi\u1ea3i cao v\u1edbi th\u00f4ng tin c\u1ea5u tr\u00fac kh\u00e1c nhau c\u00f3 th\u1ec3 \u0111\u01b0\u1ee3c chia th\u00e0nh n\u0103m lo\u1ea1i: r\u00eca l\u01b0\u1edbi, h\u00ecnh \u1ea3nh c\u1ea5u tr\u00fac m\u1ed9t chi\u1ec1u, h\u00ecnh \u1ea3nh m\u1ea1ng hai chi\u1ec1u (h\u00ecnh \u1ea3nh m\u1ed9t \u00f4), hai chi\u1ec1u h\u00ecnh \u1ea3nh c\u1ea5u tr\u00fac (h\u00ecnh \u1ea3nh t\u1ef7 l\u1ec7 nguy\u00ean t\u1eed: h\u00ecnh \u1ea3nh c\u1ea5u tr\u00fac tinh th\u1ec3), h\u00ecnh \u1ea3nh \u0111\u1eb7c bi\u1ec7t.<\/div>\n
R\u00eca l\u01b0\u1edbi: N\u1ebfu m\u1ed9t ch\u00f9m truy\u1ec1n tr\u00ean m\u1eb7t ph\u1eb3ng ti\u00eau c\u1ef1 ph\u00eda sau \u0111\u01b0\u1ee3c ch\u1ecdn b\u1edfi th\u1ea5u k\u00ednh v\u1eadt k\u00ednh v\u00e0 m\u1ed9t ch\u00f9m nhi\u1ec5u x\u1ea1 giao thoa v\u1edbi nhau, s\u1ebd c\u00f3 m\u1ed9t m\u1eabu r\u00eca m\u1ed9t chi\u1ec1u v\u1edbi c\u01b0\u1eddng \u0111\u1ed9 thay \u0111\u1ed5i \u0111\u1ecbnh k\u1ef3 (nh\u01b0 \u0111\u01b0\u1ee3c hi\u1ec3n th\u1ecb b\u1edfi tam gi\u00e1c \u0111en trong H\u00ecnh 2 (f)) \u0110\u00e2y l\u00e0 s\u1ef1 kh\u00e1c bi\u1ec7t gi\u1eefa r\u00eca m\u1ea1ng v\u00e0 h\u00ecnh \u1ea3nh m\u1ea1ng tinh th\u1ec3 v\u00e0 h\u00ecnh \u1ea3nh c\u1ea5u tr\u00fac, kh\u00f4ng y\u00eau c\u1ea7u ch\u00f9m electron ph\u1ea3i song song ch\u00ednh x\u00e1c v\u1edbi m\u1eb7t ph\u1eb3ng m\u1ea1ng. Tr\u00ean th\u1ef1c t\u1ebf, trong quan s\u00e1t c\u00e1c tinh th\u1ec3, k\u1ebft t\u1ee7a v\u00e0 t\u01b0\u01a1ng t\u1ef1, c\u00e1c r\u00eca m\u1ea1ng th\u01b0\u1eddng thu \u0111\u01b0\u1ee3c b\u1eb1ng c\u00e1ch giao thoa gi\u1eefa s\u00f3ng chi\u1ebfu v\u00e0 s\u00f3ng nhi\u1ec5u x\u1ea1. N\u1ebfu m\u1ed9t m\u1eabu nhi\u1ec5u x\u1ea1 electron c\u1ee7a m\u1ed9t ch\u1ea5t nh\u01b0 tinh th\u1ec3 \u0111\u01b0\u1ee3c ch\u1ee5p \u1ea3nh, m\u1ed9t v\u00f2ng th\u1edd ph\u01b0\u1ee3ng s\u1ebd xu\u1ea5t hi\u1ec7n nh\u01b0 th\u1ec3 hi\u1ec7n trong (a) c\u1ee7a H\u00ecnh 2.<\/div>\n

\"\"<\/p>\n

H\u00ecnh \u1ea3nh c\u1ea5u tr\u00fac m\u1ed9t chi\u1ec1u: N\u1ebfu m\u1eabu c\u00f3 \u0111\u1ed9 nghi\u00eang nh\u1ea5t \u0111\u1ecbnh, do \u0111\u00f3 ch\u00f9m tia \u0111i\u1ec7n t\u1eed song song v\u1edbi m\u1eb7t ph\u1eb3ng tinh th\u1ec3 nh\u1ea5t \u0111\u1ecbnh c\u1ee7a tinh th\u1ec3, n\u00f3 c\u00f3 th\u1ec3 th\u1ecfa m\u00e3n m\u00f4 h\u00ecnh nhi\u1ec5u x\u1ea1 nhi\u1ec5u x\u1ea1 m\u1ed9t chi\u1ec1u nh\u01b0 trong H\u00ecnh 2 (b) ( ph\u00e2n b\u1ed1 \u0111\u1ed1i x\u1ee9ng \u0111\u1ed1i v\u1edbi \u0111i\u1ec3m truy\u1ec1n) M\u00f4 h\u00ecnh nhi\u1ec5u x\u1ea1). Trong m\u1eabu nhi\u1ec5u x\u1ea1 n\u00e0y, h\u00ecnh \u1ea3nh c\u00f3 \u0111\u1ed9 ph\u00e2n gi\u1ea3i cao \u0111\u01b0\u1ee3c ch\u1ee5p trong \u0111i\u1ec1u ki\u1ec7n l\u1ea5y n\u00e9t t\u1ed1i \u01b0u kh\u00e1c v\u1edbi r\u00eca m\u1ea1ng v\u00e0 h\u00ecnh \u1ea3nh c\u1ea5u tr\u00fac m\u1ed9t chi\u1ec1u ch\u1ee9a th\u00f4ng tin c\u1ee7a c\u1ea5u tr\u00fac tinh th\u1ec3, ngh\u0129a l\u00e0 h\u00ecnh \u1ea3nh c\u1ea5u tr\u00fac m\u1ed9t chi\u1ec1u thu \u0111\u01b0\u1ee3c, nh\u01b0 \u0111\u01b0\u1ee3c hi\u1ec3n th\u1ecb trong h\u00ecnh 3 (h\u00ecnh \u1ea3nh c\u1ea5u tr\u00fac m\u1ed9t chi\u1ec1u c\u00f3 \u0111\u1ed9 ph\u00e2n gi\u1ea3i cao c\u1ee7a oxit si\u00eau d\u1eabn d\u1ef1a tr\u00ean Bi \u0111\u01b0\u1ee3c hi\u1ec3n th\u1ecb.<\/div>\n
Two-dimensional lattice image: If the electron beam is incident parallel to a certain crystal ribbon axis, a two-dimensional diffraction pattern can be obtained (two-dimensional symmetric distribution with respect to the central transmission spot, shown in Fig. 2(c)). For such an electron diffraction pattern. In the vicinity of the transmission spot, a diffraction wave reflecting the crystal unit cell appears. In the two-dimensional image generated by the interference between the diffracted wave and the transmitted wave, a two-dimensional lattice image showing the unit cell can be observed, and this image contains information on the unit cell scale. However, information that does not contain an atomic scale (into atomic arrangement), that is, a two-dimensional lattice image is a two-dimensional lattice image of single crystal silicon as shown in Fig. 3(d).<\/div>\n
Two-dimensional structure image: A diffraction pattern as shown in Fig. 2(d) is obtained. When a high-resolution electron microscope image is observed with such a diffraction pattern, the more diffraction waves involved in imaging, the information contained in the high-resolution image is also The more. A high-resolution two-dimensional structure image of the Tl2Ba2CuO6 superconducting oxide is shown in Fig. 3(e). However, the diffraction of the high-wavelength side with higher resolution limit of the electron microscope is unlikely to participate in the imaging of the correct structure information, and becomes the background. Therefore, within the range allowed by the resolution. By imaging with as many diffracted waves as possible, it is possible to obtain an image containing the correct information of the arrangement of atoms within the unit cell. The structure image can only be observed in a thin region excited by the proportional relationship between the wave participating in imaging and the thickness of the sample.<\/div>\n

\"\"<\/p>\n

H\u00ecnh \u1ea3nh \u0111\u1eb7c bi\u1ec7t: Tr\u00ean m\u1eabu nhi\u1ec5u x\u1ea1 c\u1ee7a m\u1eb7t ph\u1eb3ng ti\u00eau c\u1ef1 ph\u00eda sau, vi\u1ec7c ch\u00e8n kh\u1ea9u \u0111\u1ed9 ch\u1ec9 ch\u1ecdn h\u00ecnh \u1ea3nh s\u00f3ng c\u1ee5 th\u1ec3 \u0111\u1ec3 c\u00f3 th\u1ec3 quan s\u00e1t h\u00ecnh \u1ea3nh t\u01b0\u01a1ng ph\u1ea3n c\u1ee7a th\u00f4ng tin c\u1ea5u tr\u00fac c\u1ee5 th\u1ec3. M\u1ed9t v\u00ed d\u1ee5 \u0111i\u1ec3n h\u00ecnh c\u1ee7a n\u00f3 l\u00e0 m\u1ed9t c\u1ea5u tr\u00fac c\u00f3 tr\u1eadt t\u1ef1 nh\u01b0 th\u1ebf n\u00e0o. M\u1eabu nhi\u1ec5u x\u1ea1 electron t\u01b0\u01a1ng \u1ee9ng \u0111\u01b0\u1ee3c hi\u1ec3n th\u1ecb trong H\u00ecnh 2 (e) l\u00e0 m\u1eabu nhi\u1ec5u x\u1ea1 electron c\u1ee7a h\u1ee3p kim theo th\u1ee9 t\u1ef1 Au, Cd. C\u1ea5u tr\u00fac \u0111\u01b0\u1ee3c s\u1eafp x\u1ebfp d\u1ef1a tr\u00ean c\u1ea5u tr\u00fac l\u1eadp ph\u01b0\u01a1ng t\u1eadp trung v\u00e0o m\u1eb7t, trong \u0111\u00f3 c\u00e1c nguy\u00ean t\u1eed Cd \u0111\u01b0\u1ee3c s\u1eafp x\u1ebfp theo th\u1ee9 t\u1ef1. H\u00ecnh 2 (e) m\u1eabu nhi\u1ec5u x\u1ea1 electron l\u00e0 y\u1ebfu ngo\u1ea1i tr\u1eeb c\u00e1c ph\u1ea3n x\u1ea1 m\u1ea1ng c\u01a1 b\u1ea3n c\u1ee7a c\u00e1c ch\u1ec9 s\u1ed1 (020) v\u00e0 (008). Ph\u1ea3n x\u1ea1 m\u1ea1ng tinh th\u1ec3, s\u1eed d\u1ee5ng th\u1ea5u k\u00ednh v\u1eadt k\u00ednh \u0111\u1ec3 tr\u00edch xu\u1ea5t ph\u1ea3n x\u1ea1 m\u1ea1ng c\u01a1 b\u1ea3n, s\u1eed d\u1ee5ng s\u00f3ng truy\u1ec1n v\u00e0 h\u00ecnh \u1ea3nh ph\u1ea3n x\u1ea1 m\u1ea1ng tinh th\u1ec3, ch\u1ec9 c\u00e1c nguy\u00ean t\u1eed Cd c\u00f3 \u0111i\u1ec3m s\u00e1ng ho\u1eb7c \u0111i\u1ec3m t\u1ed1i nh\u01b0 \u0111\u1ed9 ph\u00e2n gi\u1ea3i cao nh\u01b0 trong H\u00ecnh 4.<\/div>\n

\"\"<\/p>\n

Nh\u01b0 \u0111\u01b0\u1ee3c hi\u1ec3n th\u1ecb trong H\u00ecnh 4, h\u00ecnh \u1ea3nh c\u00f3 \u0111\u1ed9 ph\u00e2n gi\u1ea3i cao \u0111\u01b0\u1ee3c hi\u1ec3n th\u1ecb thay \u0111\u1ed5i theo \u0111\u1ed9 d\u00e0y c\u1ee7a m\u1eabu g\u1ea7n ti\u00eau c\u1ef1 d\u01b0\u1edbi \u0111\u1ed9 ph\u00e2n gi\u1ea3i cao t\u1ed1i \u01b0u. Do \u0111\u00f3, khi ch\u00fang ta c\u00f3 \u0111\u01b0\u1ee3c h\u00ecnh \u1ea3nh c\u00f3 \u0111\u1ed9 ph\u00e2n gi\u1ea3i cao, ch\u00fang ta kh\u00f4ng th\u1ec3 n\u00f3i \u0111\u01a1n gi\u1ea3n h\u00ecnh \u1ea3nh c\u00f3 \u0111\u1ed9 ph\u00e2n gi\u1ea3i cao l\u00e0 g\u00ec. Tr\u01b0\u1edbc ti\u00ean ch\u00fang ta ph\u1ea3i th\u1ef1c hi\u1ec7n m\u1ed9t m\u00f4 ph\u1ecfng m\u00e1y t\u00ednh \u0111\u1ec3 t\u00ednh to\u00e1n c\u1ea5u tr\u00fac c\u1ee7a v\u1eadt li\u1ec7u d\u01b0\u1edbi c\u00e1c \u0111\u1ed9 d\u00e0y kh\u00e1c nhau. M\u1ed9t h\u00ecnh \u1ea3nh \u0111\u1ed9 ph\u00e2n gi\u1ea3i cao c\u1ee7a c\u00e1c ch\u1ea5t. M\u1ed9t lo\u1ea1t c\u00e1c h\u00ecnh \u1ea3nh c\u00f3 \u0111\u1ed9 ph\u00e2n gi\u1ea3i cao \u0111\u01b0\u1ee3c t\u00ednh to\u00e1n b\u1edfi m\u00e1y t\u00ednh \u0111\u01b0\u1ee3c so s\u00e1nh v\u1edbi c\u00e1c h\u00ecnh \u1ea3nh c\u00f3 \u0111\u1ed9 ph\u00e2n gi\u1ea3i cao m\u00e0 th\u00ed nghi\u1ec7m thu \u0111\u01b0\u1ee3c \u0111\u1ec3 x\u00e1c \u0111\u1ecbnh h\u00ecnh \u1ea3nh c\u00f3 \u0111\u1ed9 ph\u00e2n gi\u1ea3i cao m\u00e0 th\u00ed nghi\u1ec7m thu \u0111\u01b0\u1ee3c. H\u00ecnh \u1ea3nh m\u00f4 ph\u1ecfng m\u00e1y t\u00ednh \u0111\u01b0\u1ee3c hi\u1ec3n th\u1ecb trong H\u00ecnh 5 \u0111\u01b0\u1ee3c so s\u00e1nh v\u1edbi h\u00ecnh \u1ea3nh c\u00f3 \u0111\u1ed9 ph\u00e2n gi\u1ea3i cao m\u00e0 th\u00ed nghi\u1ec7m thu \u0111\u01b0\u1ee3c.<\/div>\n
This article is organized by the material person column technology consultant.<\/div>\n

\"\"<\/div>\n<\/div>\n

<\/p>","protected":false},"excerpt":{"rendered":"

High resolution transmission electron microscopy (HRTEM or HREM) is the phase contrast (the contrast of high-resolution electron microscopy images is formed by the phase difference between the synthesized projected wave and the diffracted wave, It is called phase contrast.) Microscopy, which gives an atomic arrangement of most crystalline materials. High-resolution transmission electron microscopy began in…<\/p>","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"_jetpack_memberships_contains_paid_content":false,"footnotes":""},"categories":[79],"tags":[],"class_list":["post-1711","post","type-post","status-publish","format-standard","hentry","category-materials-weekly"],"jetpack_featured_media_url":"","jetpack_sharing_enabled":true,"_links":{"self":[{"href":"https:\/\/www.meetyoucarbide.com\/vi\/wp-json\/wp\/v2\/posts\/1711","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.meetyoucarbide.com\/vi\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/www.meetyoucarbide.com\/vi\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/vi\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/vi\/wp-json\/wp\/v2\/comments?post=1711"}],"version-history":[{"count":0,"href":"https:\/\/www.meetyoucarbide.com\/vi\/wp-json\/wp\/v2\/posts\/1711\/revisions"}],"wp:attachment":[{"href":"https:\/\/www.meetyoucarbide.com\/vi\/wp-json\/wp\/v2\/media?parent=1711"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/vi\/wp-json\/wp\/v2\/categories?post=1711"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/vi\/wp-json\/wp\/v2\/tags?post=1711"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}