欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

How cutting heat is generated

The cutting heat is generated in three deformation zones. During the cutting process, the metal deformation and friction in the three deformation zones are the root cause of the cutting heat. Most of the work of deformation and friction during the cutting process is converted into cutting heat. The figure below shows the location of the heat generated by the cutting heat and the dispersion.

What is Cutting Heat Transfer 2

The amount of heat generated by the cutting heat and the proportion of heat generated in the three deformation zones vary with the cutting conditions. When processing plastic metal materials, when the flank wear amount is not large, and the cutting thickness is large, the heat generated in the first deformation zone is the most. When the tool wear amount is large, and the cutting thickness is small, the third deformation zone The proportion of heat generation will increase. The following diagram shows the ratios of heat generated in the three deformation zones to the thickness of the cut when machining nickel, chromium, molybdenum, vanadium and steel with a carbide tool.

Diagram 1. three ratios of heat generated by nickel, chromium, molybdenum

  1. First deformation zone 2-second deformation zone 3-third deformation zone
What is Cutting Heat Transfer 3

When processing brittle materials such as cast iron, due to the formation of breaking chips, the contact length of the chip is small, the friction on the rake face is small, and the proportion of heat generation in the first and second deformation zones is decreased. Therefore, the proportion of heat generated in the third deformation zone is relatively increased. .

The heat of cutting generated during the cutting process is dissipated outside the cutting zone by the chips, the workpiece, the tool and the surrounding medium. The proportion of heat transfer by each route is related to the cutting form, the tool, the workpiece material and the surrounding medium. 50%~86% of the heat in the turning process is taken away by the chip, 40%~10% is transferred into the turning tool, 9%~3% is introduced into the workpiece, and about 1% is introduced into the air. When drilling, 28% of the heat is taken away by the chips, 14.5% is transferred into the tool, 52.5% is introduced into the workpiece, and about 5% is introduced into the surrounding medium.

In addition, the cutting speed “υ” also has a certain influence on the heat transfer ratio of each route. The higher the cutting speed, the less heat is carried away by the chips. The chart below shows the effect of enthalpy on the heat transfer.

Dia.3 The cutting velocity’s influence on cutting heat transfer


I—Tool II—Workpiece III—Chip

What is Cutting Heat Transfer 4

Cutting heat and its effect on the cutting process

The heat generated by cutting a workpiece with a tool is called cutting heat. Cutting heat is also an important physical phenomenon in the cutting process, which has many effects on the cutting process. The heat of the cutting is transferred to the workpiece, which causes thermal deformation of the workpiece, thus reducing the machining accuracy. The local high temperature on the surface of the workpiece deteriorates the quality of the machined surface.

The heat of cutting that is transmitted to the tool is an important cause of tool wear and tear. Cutting heat also affects cutting productivity and cost by causing tool wear. In short, cutting heat has direct and indirect effects on the quality, productivity and cost of cutting. Research and master the general rules of heat generation and change of cutting heat, limit the adverse effects of cutting heat to the allowable range, and cut the machining. Production is of great significance.

Main factors affecting cutting temperature

First, the influence of cutting amount on cutting temperature

1. Cutting speed has a significant effect on cutting temperature. Experiments have shown that as the cutting speed increases, the cutting temperature will increase significantly.

2. The feed rate f also has a certain influence on the cutting temperature. As the feed rate increases, the amount of metal removal per unit time increases, and the cutting heat generated during the cutting process also increases, causing the cutting temperature to rise.

However, the increase in cutting temperature as the feed rate increases is not as significant as the cutting speed.

3. The depth of cut ap has little effect on the cutting temperature. Since the heat generated in the cutting zone increases proportionally after the depth of cut ap increases, the increase in the cutting temperature is not significant because of the improved heat dissipation conditions.

Tr? l?i

Email c?a b?n s? kh?ng ???c hi?n th? c?ng khai. Các tr??ng b?t bu?c ???c ?ánh d?u *

欧美日本欧美日本区一区二| 骚片视频在线观看| 欧洲美熟女乱又伦| 久久精精品久久久久噜噜| 中文字幕一区二区 在线| 男男大鸡巴操小屁眼视频| 尤物性生活午夜在线视频| 2021最新热播国产一区二区| 我和两个老师的浮乱生活| 中文字幕亚洲精品女同一页| 欧美一区二区三区久久国产精品| 日韩高清毛片在线观看| 国产精品午夜小视频观看| 骚逼被狂插视频教程| 久久久久久久 亚洲精品| 欧美一级免费观看| 国产精品碰碰现在自| 鸡巴插进女人的逼里| 久久久久国产AV成人片| 顶的速度越来越快越| 婷婷激情五月天四房| 天天天天天干夜夜夜夜夜操| 美女麻豆颜色光屁股眼子| 国产精品一区二区在线观看91| 中文字幕你懂的av一区二区| 日本一区二区高清免费不卡| 女人被大鸡吧操逼| 美女张开腿让男人桶91| 大黑屌爆操日本女人| 久久99国产中文| 黄色视频力肏女人| 91久久高清国语自产拍| 男人把昆吧放女人屁股里| 内射白嫩少妇超碰| 中文字幕av一区二区三区蜜桃| 亚洲视频免费观看| 国产色哟哟精选在线播放| 亚洲波多野结衣日韩在线| 夫妻性生活在线免费视频| 91污在线观看一区二区三区| 人妻夜夜添夜夜无码AV|