欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

The structural shape of a part shall not only meet the design performance requirements, but also meet the processing process requirements. Therefore, it is necessary to understand the common process structure on parts.

Process structure of casting parts (including drawing of transition line)

The process structure of casting parts includes mold inclination, casting fillet, casting wall thickness, etc.

1. Formwork lifting slope

   When casting parts, in order to facilitate mold taking, a certain slope is often designed along the mold starting direction on the casting wall, that is, the mold starting slope. For the structure with small inclination, it may not be drawn on the graph, but the value of mold lifting inclination must be explained in words in the technical requirements. As shown in Figure 1.

What is the optimal structure of mechanical part drawing 1

Hình 1

2. Cast fillet

When casting parts, in order to prevent sand falling from the casting sand mold and avoid cracks or shrinkage cavities during casting cooling (as shown in Fig. 2), the intersection of casting surfaces shall be made into fillet transition, as shown in Fig. 3. Generally, the cast fillet shall be drawn in the drawing. When the radius of each fillet is the same or close, the radius value can be uniformly noted in the technical requirements, such as cast fillet R3 ~ R5, etc.

What is the optimal structure of mechanical part drawing 2

Figure.2

What is the optimal structure of mechanical part drawing 3

Figure.3

Because there are casting fillets at the intersection of casting surfaces, the intersection line of two surfaces becomes less obvious. However, on the part drawing, the theoretical intersection line of the surface must still be drawn, but it is required to leave a blank at both ends or one end of the intersection line, which is usually called the transition line. The drawing method of transition line is basically the same as that of intersection line without fillet. The differences between them are shown in Figure 4.

What is the optimal structure of mechanical part drawing 4

Figure.4

3. Casting wall thickness

  In order to avoid cracks or shrinkage cavities caused by internal stress during casting cooling, the wall thickness of the casting shall be as uniform as possible, and the transition between different wall thicknesses shall also be uniform, as shown in Figure 5.

What is the optimal structure of mechanical part drawing 5

Figure.5

Cutting process structure of metal parts

  The cutting process structure of metal parts includes chamfering and rounding, tool return groove or grinding wheel over travel groove, reasonable structure of drilling, boss and pit, etc.

1. Chamfering and rounding

  In order to facilitate assembly, chamfer is often machined at the shaft end or orifice, as shown in Fig. 6 (a). In order to avoid cracks on the stepped shaft or hole due to stress concentration, fillets are often machined at the turning point of the shoulder, as shown in Fig. 6 (b). The type and size of chamfering and rounding of parts shall be specified in the national standard.

What is the optimal structure of mechanical part drawing 6

Figure.6

2. Undercut or grinding wheel over travel groove

  In order to easily withdraw the tool during cutting and ensure the machining quality, the tool withdrawal groove or grinding wheel over travel groove is often machined at the shoulder of the machining surface, as shown in Fig. 6 (c). The structure and size of the over travel groove of the grinding wheel are specified in the national standard.

3. Bosses or pits

  In order to reduce the amount of machining and ensure good indirect contact of parts during assembly, bosses or pits are often made on the surface of parts.

4. Reasonable drilling structure

  In order to avoid axis deflection and bit breaking during drilling, the axis of the hole shall be perpendicular to the end face of the hole. Therefore, when there is a drilling structure on the inclined surface, a plane, boss or pit perpendicular to the drilling direction shall be designed, as shown in Figure 8.

Cutting process structure of metal parts

  The cutting process structure of metal parts includes chamfering and rounding, tool return groove or grinding wheel over travel groove, reasonable structure of drilling, boss and pit, etc.

1. Chamfering and rounding

  In order to facilitate assembly, chamfer is often machined at the shaft end or orifice, as shown in Fig. 6 (a). In order to avoid cracks on the stepped shaft or hole due to stress concentration, fillets are often machined at the turning point of the shoulder, as shown in Fig. 6 (b). The type and size of chamfering and rounding of parts shall be specified in the national standard.

What is the optimal structure of mechanical part drawing 7

Figure.6

2. Undercut or grinding wheel over travel groove

  In order to easily withdraw the tool during cutting and ensure the machining quality, the tool withdrawal groove or grinding wheel over travel groove is often machined at the shoulder of the machining surface, as shown in Fig. 6 (c). The structure and size of the over travel groove of the grinding wheel are specified in the national standard.

3. Bosses or pits

  In order to reduce the amount of machining and ensure good indirect contact of parts during assembly, bosses or pits are often made on the surface of parts, as shown in Figure 7What is the optimal structure of mechanical part drawing 8

What is the optimal structure of mechanical part drawing 9

Figure.7

4. Reasonable drilling structure

  In order to avoid axis deflection and bit breaking during drilling, the axis of the hole shall be perpendicular to the end face of the hole. Therefore, when there is a drilling structure on the inclined surface, a plane, boss or pit perpendicular to the drilling direction shall be designed, as shown in Figure 8.

What is the optimal structure of mechanical part drawing 10

Tr? l?i

Email c?a b?n s? kh?ng ???c hi?n th? c?ng khai. Các tr??ng b?t bu?c ???c ?ánh d?u *

嗯嗯嗯啊啊啊好湿好痒好多水视频| 国产天堂网一区二区三区 | 搬开女人下面使劲插视频| 欲色欲香天天网综合久久| 夫妻性生活视频在线直播| 久久精品国产亚洲av伦理| 亚洲波多野结衣日韩在线| 美女呻吟翘臀后进爆白浆| 一级特黄大片色欧美精品| 国产成人精品区在线观看| 男人草女人的骚逼逼| 免费的黄片很很操| 精品少妇一区二区三区中文字幕| 国产品无码一区二区三区在线| 国产日韩一区二区三区在线播放| 国产一区二区在线观看精品| 鸡巴插骚逼视频欧美风格| 男人添女人下面免費视頻| 日本一区二区高清免费不卡| 无码人妻精品一区二区三区蜜桃| 美女人的逼免费观看| 久久精品欧美日韩精品不卡| 欧美性做爰片免费视频看| 久久国产老熟女老女人| 亚洲福利小视频在线观看| 欧美亚洲综合久久夜夜嗨| 又爽又粗又大又长的爆草| 日韩午夜精品中文字幕| 国产伦精品一区二区三区视频抖音| 大鸡巴猛插小穴视频| 美女裸胸屁股视频| 日本中文字幕无人区一区二区| 久久久久久久久中文字幕| 黄色亚洲一级大片| 熟妇好大好深好爽| 日韩有码一区二区三区在线观看| 联系附近成熟妇女| 永久性日韩无码视频| 久久久久久亚洲精品首页| 色偷偷影音先锋男人av| 日韩有码视频在线|