{"id":21898,"date":"2023-05-20T15:57:36","date_gmt":"2023-05-20T07:57:36","guid":{"rendered":"https:\/\/www.meetyoucarbide.com\/?p=21898"},"modified":"2023-05-20T15:57:36","modified_gmt":"2023-05-20T07:57:36","slug":"how-does-deep-cryogenic-treatment-on-carbide-been-carried","status":"publish","type":"post","link":"https:\/\/www.meetyoucarbide.com\/tr\/how-does-deep-cryogenic-treatment-on-carbide-been-carried\/","title":{"rendered":"Karb\u00fcrde derin kriyojenik i\u015flem nas\u0131l ger\u00e7ekle\u015ftirilir?"},"content":{"rendered":"
karb\u00fcr, sert faz\u0131n ve ba\u011flanma faz\u0131n\u0131n m\u00fckemmel \u00f6zelliklerini birle\u015ftirir, b\u00f6ylece bir dizi avantaja sahiptir. Y\u00fcksek sertli\u011fe (80-94 HRA) ve a\u015f\u0131nma direncine sahiptir, \u00f6zellikle y\u00fcksek s\u0131cakl\u0131klarda y\u00fcksek sertlik ve mukavemeti korur. 600\u00b0C'de sertli\u011fi y\u00fcksek h\u0131z \u00e7eli\u011finin oda s\u0131cakl\u0131\u011f\u0131ndaki sertli\u011fini a\u015far ve 1.000\u00b0C'de sertli\u011fi karbon \u00e7eli\u011finin oda s\u0131cakl\u0131\u011f\u0131ndaki sertli\u011fini a\u015far, ancak mukavemet hala 300 MPa civar\u0131nda korunabilir. Tipik olarak 400 ila 700 MPa aras\u0131nda de\u011fi\u015fen y\u00fcksek bir elastik mod\u00fcle sahiptir. karb\u00fcr, a\u011f\u0131r y\u00fcklere dayanabilen ve \u015feklini koruyabilen y\u00fcksek bir bas\u0131n\u00e7 dayan\u0131m\u0131na sahiptir. Ayn\u0131 zamanda d\u00fc\u015f\u00fck bir termal genle\u015fme katsay\u0131s\u0131na sahiptir; genellikle \u00e7eli\u011finkinin 50%'sidir. Ayr\u0131ca \u00e7eli\u011fe k\u0131yasla iyi kimyasal stabilite ve \u00fcst\u00fcn oksidasyon ve korozyon direnci g\u00f6sterir. karb\u00fcr neredeyse t\u00fcm end\u00fcstriyel sekt\u00f6rlerde ve geli\u015fen teknolojik alanlarda tak\u0131mlama ve yap\u0131sal uygulamalar i\u00e7in vazge\u00e7ilmez bir malzeme haline gelmi\u015ftir.<\/p>\n

\"\"<\/p>\n

Is\u0131l i\u015flem nedir?<\/h1>\n

Is\u0131l i\u015flem, malzemelerin yap\u0131sal \u00f6zelliklerinin iyile\u015ftirilmesinde \u00f6nemli bir y\u00f6ntemdir. Geleneksel \u0131s\u0131l i\u015flem proseslerinin bir uzant\u0131s\u0131 ve ilerlemesi olan derin kriyojenik i\u015flem, 20. y\u00fczy\u0131l\u0131n ortalar\u0131ndan itibaren malzeme \u0131s\u0131l i\u015flemi alan\u0131nda yayg\u0131n olarak uygulanmaktad\u0131r. Geleneksel \u00e7elik malzemeler i\u00e7in derin kriyojenik i\u015flem art\u0131k osteniti d\u00f6n\u00fc\u015ft\u00fcrebilir, i\u015f par\u00e7as\u0131n\u0131n sertli\u011fini art\u0131rabilir ve boyutlar\u0131n\u0131 stabilize edebilir. \u0130\u015f par\u00e7as\u0131n\u0131n a\u015f\u0131nma direncini art\u0131rarak ultra ince karb\u00fcrleri \u00e7\u00f6keltebilir. Tak\u0131mlar\u0131n ve kal\u0131plar\u0131n darbe dayan\u0131kl\u0131l\u0131\u011f\u0131n\u0131 art\u0131rarak tane yap\u0131s\u0131n\u0131 iyile\u015ftirebilir. Ayr\u0131ca martensitik paslanmaz \u00e7eli\u011fin korozyon direncini art\u0131rabilir ve i\u015f par\u00e7as\u0131n\u0131n parlatma performans\u0131n\u0131 art\u0131rabilir. S\u0131v\u0131 nitrojen so\u011futma teknolojisinin ve izolasyon tekniklerinin daha da geli\u015fmesi ve olgunla\u015fmas\u0131yla birlikte, karb\u00fcr\u00fcn derin kriyojenik i\u015flemi de hem yurt i\u00e7inde hem de yurt d\u0131\u015f\u0131nda end\u00fcstriyel i\u015fletmelerin dikkatini \u00e7ekmi\u015ftir.<\/p>\n

Derin Kriyojenik Ar\u0131tma S\u00fcrecinin G\u00fcncel Durumu<\/h1>\n

Deep cryogenic treatment typically involves cooling the workpiece using liquid nitrogen, which can bring the temperature below -190\u00b0C. The microstructure of the treated material undergoes changes in a low-temperature environment, resulting in improved properties. Deep cryogenic treatment was initially proposed by the Soviets in 1939, but it wasn’t until the 1960s that the United States industrialized the technology and started applying it primarily in the aerospace field. In the 1970s, its application expanded to the mechanical manufacturing sector.<\/p>\n

Kriyojenik ar\u0131tma proses y\u00f6ntemleri<\/h1>\n

So\u011futma yakla\u015f\u0131m\u0131na dayal\u0131 iki farkl\u0131 y\u00f6ntem vard\u0131r: s\u0131v\u0131 bazl\u0131 ve gaz bazl\u0131 y\u00f6ntemler. S\u0131v\u0131 bazl\u0131 y\u00f6ntem, malzemeyi veya i\u015f par\u00e7as\u0131n\u0131 do\u011frudan s\u0131v\u0131 nitrojene bat\u0131rmay\u0131, h\u0131zl\u0131 bir \u015fekilde s\u0131v\u0131 nitrojenin s\u0131cakl\u0131\u011f\u0131na kadar so\u011futmay\u0131 ve ard\u0131ndan s\u0131cakl\u0131\u011f\u0131 istenen seviyeye y\u00fckseltmeden \u00f6nce belirli bir s\u00fcre bu s\u0131cakl\u0131kta tutmay\u0131 i\u00e7erir. Bu y\u00f6ntemin so\u011futma ve \u0131s\u0131tma h\u0131zlar\u0131n\u0131 kontrol etmede zorluklar\u0131 vard\u0131r ve termal \u015foklardan dolay\u0131 i\u015f par\u00e7as\u0131nda potansiyel hasara neden olabilece\u011fine inan\u0131lmaktad\u0131r. S\u0131v\u0131 bazl\u0131 derin kriyojenik ar\u0131tma i\u00e7in kullan\u0131lan ekipmanlar, s\u0131v\u0131 nitrojen tanklar\u0131 gibi nispeten basittir.<\/p>\n

\u00d6te yandan, gaz bazl\u0131 y\u00f6ntem, so\u011futmay\u0131 sa\u011flamak i\u00e7in s\u0131v\u0131 nitrojenin gizli buharla\u015fma \u0131s\u0131s\u0131n\u0131 (yakla\u015f\u0131k 199,54 kJ\/kg) ve d\u00fc\u015f\u00fck s\u0131cakl\u0131ktaki nitrojen gaz\u0131n\u0131n \u0131s\u0131 emilimini kullan\u0131r. Bu y\u00f6ntem -190\u00b0C derin kriyojenik s\u0131cakl\u0131\u011fa ula\u015fabilir. \u0130\u015f par\u00e7as\u0131n\u0131n d\u00fc\u015f\u00fck s\u0131cakl\u0131ktaki nitrojen gaz\u0131yla temas ettirilmesini ve daha sonra konveksiyonla \u0131s\u0131 transferi yoluyla dola\u015fmas\u0131n\u0131 i\u00e7erir. Nitrojen gaz\u0131, i\u015f par\u00e7as\u0131n\u0131 so\u011futmak i\u00e7in d\u00fc\u015f\u00fck s\u0131cakl\u0131ktaki nitrojen gaz\u0131n\u0131n gizli buharla\u015fma \u0131s\u0131s\u0131 ve \u0131s\u0131 emiliminden yararlan\u0131larak, derin bir kriyojenik oda i\u00e7indeki bir a\u011f\u0131zl\u0131ktan p\u00fcsk\u00fcrt\u00fcld\u00fckten sonra buharla\u015ft\u0131r\u0131l\u0131r. So\u011futma h\u0131z\u0131, s\u0131v\u0131 nitrojen giri\u015fi ayarlanarak kontrol edilebilir, bu da derin kriyojenik i\u015flem s\u0131cakl\u0131\u011f\u0131n\u0131n otomatik ve hassas kontrol\u00fcne olanak tan\u0131r. Bu y\u00f6ntem daha az termal \u015fok uygular ve \u00e7atlama olas\u0131l\u0131\u011f\u0131n\u0131 azalt\u0131r. \u015eu anda, gaz bazl\u0131 y\u00f6ntem bu alandaki ara\u015ft\u0131rmac\u0131lar taraf\u0131ndan geni\u015f \u00e7apta kabul g\u00f6rmektedir ve so\u011futma ekipman\u0131 esas olarak s\u0131cakl\u0131k kontroll\u00fc programlanabilir derin kriyojenik odalardan olu\u015fmaktad\u0131r.<\/p>\n

Derin kriyojenik i\u015flem, demirli metaller, demir d\u0131\u015f\u0131 metaller ve metal ala\u015f\u0131mlar\u0131 gibi malzemelerin servis \u00f6mr\u00fcn\u00fc, a\u015f\u0131nma direncini ve boyutsal stabilitesini \u00f6nemli \u00f6l\u00e7\u00fcde art\u0131rabilir. \u00d6nemli ekonomik faydalar ve pazar beklentileri sunar.<\/p>\n

\"\"<\/p>\n

Derin kriyojenik teknolojinin geli\u015fim tarihi<\/h1>\n

The application of deep cryogenic technology to carbide\u00a0was first reported in the 1980s and 1990s. In 1981, Japan’s “Mechanical Technology” and in 1992, the US’s “Modern Machine Shop” reported significant improvements in performance after deep cryogenic treatment of carbide. Since the 1970s, foreign research on deep cryogenic treatment has been highly productive, with countries such as the former Soviet Union, the United States, and Japan successfully utilizing deep cryogenic treatment to enhance the service life, wear resistance, and dimensional stability of tooling and workpieces. The practical application of deep cryogenic treatment by a US tooling company demonstrated that the service life of treated carbide\u00a0blades increased by 2 to 8 times, while the refurbishment cycle of carbide\u00a0wire drawing dies extended from a few weeks to several months.<\/p>\n

1990'l\u0131 y\u0131llarda \u00c7in'de karb\u00fcr i\u00e7in derin kriyojenik teknoloji \u00fczerine ara\u015ft\u0131rmalar ba\u015flat\u0131ld\u0131 ve belirli ara\u015ft\u0131rma sonu\u00e7lar\u0131na ula\u015f\u0131ld\u0131. Ancak genel olarak karb\u00fcr\u00fcn derin kriyojenik ar\u0131t\u0131m\u0131 konusunda nispeten s\u0131n\u0131rl\u0131 ve par\u00e7al\u0131 ara\u015ft\u0131rmalar yap\u0131lm\u0131\u015ft\u0131r. Mevcut ara\u015ft\u0131rmalardan elde edilen sonu\u00e7lar da tutars\u0131zd\u0131r; bu da ara\u015ft\u0131rmac\u0131lar\u0131n daha derinlemesine ara\u015ft\u0131rmaya ihtiya\u00e7 duydu\u011funu g\u00f6stermektedir. Mevcut ara\u015ft\u0131rma verilerine dayanarak, derin kriyojenik i\u015flemin \u00f6ncelikle karb\u00fcr\u00fcn a\u015f\u0131nma direncini ve hizmet \u00f6mr\u00fcn\u00fc iyile\u015ftirdi\u011fi ve fiziksel \u00f6zellikleri \u00fczerinde daha az fark edilebilir etki sa\u011flad\u0131\u011f\u0131 a\u00e7\u0131kt\u0131r.<\/p>\n

\"\"<\/p>\n

Derin kriyojenik ar\u0131tman\u0131n g\u00fc\u00e7lendirme mekanizmalar\u0131<\/h1>\n

Faz d\u00f6n\u00fc\u015f\u00fcm\u00fc g\u00fc\u00e7lendirmesi<\/h2>\n

karb\u00fcr, kobalt\u0131n (Co) iki kristal yap\u0131s\u0131n\u0131 i\u00e7erir: y\u00fczey merkezli k\u00fcbik (\u03b1-faz\u0131) ve alt\u0131gen s\u0131k\u0131 paketlenmi\u015f (\u03b5-faz\u0131). \u03b5-faz\u0131, \u03b1-faz\u0131na k\u0131yasla daha k\u00fc\u00e7\u00fck bir s\u00fcrt\u00fcnme katsay\u0131s\u0131na ve daha iyi a\u015f\u0131nma direncine sahiptir. 417\u00b0C'nin \u00fczerindeki s\u0131cakl\u0131klarda, \u03b1-faz\u0131n\u0131n serbest enerjisi daha d\u00fc\u015f\u00fckt\u00fcr, dolay\u0131s\u0131yla Co, \u03b1-faz\u0131 formunda bulunur. 417\u00b0C'nin alt\u0131nda, \u03b5-faz\u0131 daha d\u00fc\u015f\u00fck serbest enerjiye sahiptir ve y\u00fcksek s\u0131cakl\u0131kta kararl\u0131 \u03b1-faz\u0131, enerji a\u00e7\u0131s\u0131ndan tercih edilen \u03b5-faz\u0131na d\u00f6n\u00fc\u015f\u00fcr. Bununla birlikte, a-faz\u0131nda WC par\u00e7ac\u0131klar\u0131n\u0131n ve \u00e7\u00f6z\u00fcnen atomlar\u0131n varl\u0131\u011f\u0131 nedeniyle, faz d\u00f6n\u00fc\u015f\u00fcm\u00fc \u00fczerinde \u00f6nemli k\u0131s\u0131tlamalar vard\u0131r ve bu da \u03b1-faz\u0131ndan \u03b5-faz\u0131na d\u00f6n\u00fc\u015f\u00fcm\u00fc daha da zorla\u015ft\u0131r\u0131r. Derin kriyojenik i\u015flem, \u03b1 ve \u03b5 fazlar\u0131 aras\u0131ndaki serbest enerji fark\u0131n\u0131 artt\u0131r\u0131r, faz d\u00f6n\u00fc\u015f\u00fcm\u00fc itici g\u00fcc\u00fcn\u00fc artt\u0131r\u0131r ve \u03b5-faz d\u00f6n\u00fc\u015f\u00fcm\u00fc miktar\u0131n\u0131 artt\u0131r\u0131r. Derin kriyojenik i\u015flem, Co'da \u00e7\u00f6z\u00fcnen baz\u0131 atomlar\u0131n \u00e7\u00f6z\u00fcn\u00fcrl\u00fc\u011f\u00fcn\u00fcn azalmas\u0131 nedeniyle bile\u015fik halinde \u00e7\u00f6kelmesine neden olur, Co matrisindeki sert faz\u0131 artt\u0131r\u0131r, dislokasyon hareketini engeller ve ikinci faz par\u00e7ac\u0131k etkisi ile g\u00fc\u00e7lendirme sa\u011flar.<\/p>\n

Y\u00fczey art\u0131k gerilim g\u00fc\u00e7lendirmesi<\/h2>\n

\u00c7al\u0131\u015fmalar, derin kriyojenik i\u015flemin y\u00fczey katman\u0131ndaki art\u0131k bas\u0131n\u00e7 gerilimini artt\u0131rd\u0131\u011f\u0131n\u0131 g\u00f6stermi\u015ftir. Bir\u00e7ok ara\u015ft\u0131rmac\u0131, y\u00fczey katman\u0131nda belirli bir d\u00fczeyde art\u0131k bas\u0131n\u00e7 geriliminin varl\u0131\u011f\u0131n\u0131n, karb\u00fcr\u00fcn servis \u00f6mr\u00fcn\u00fc \u00f6nemli \u00f6l\u00e7\u00fcde art\u0131rd\u0131\u011f\u0131na inanmaktad\u0131r. Sinterleme sonras\u0131 so\u011futma i\u015flemi s\u0131ras\u0131nda ba\u011flay\u0131c\u0131 faz Co \u00e7ekme gerilimine maruz kal\u0131rken, WC par\u00e7ac\u0131klar\u0131 bas\u0131n\u00e7 gerilimine maruz kal\u0131r. \u00c7ekme gerilimi Co ba\u011flay\u0131c\u0131ya zarar verebilir. Bu nedenle baz\u0131 ara\u015ft\u0131rmac\u0131lar, derin kriyojenik i\u015flemin neden oldu\u011fu y\u00fczey bas\u0131n\u00e7 gerilimindeki art\u0131\u015f\u0131n, ba\u011flay\u0131c\u0131 fazda sinterleme sonras\u0131nda so\u011futma i\u015flemi s\u0131ras\u0131nda olu\u015fan \u00e7ekme gerilimini hafifletebilece\u011fine veya k\u0131smen dengeleyebilece\u011fine ve hatta bunu bas\u0131n\u00e7 gerilimine g\u00f6re ayarlayarak mikro \u00e7atlak olu\u015fumunu azaltabilece\u011fine inan\u0131yor. .<\/p>\n

Di\u011fer g\u00fc\u00e7lendirme mekanizmalar\u0131<\/h2>\n

It is believed that after deep cryogenic treatment, the formation of \u03b7-phase particles in the matrix, along with the WC particles, makes the matrix denser and more robust. The formation of \u03b7-phase also consumes the Co in the matrix. The decrease in Co content in the binder phase increases the overall thermal conductivity of the material. The growth of carbideparticle size and adjacency also enhances the thermal conductivity of the matrix. The increased thermal conductivity allows for faster heat dissipation at the cutting edge of the tooling, improving wear resistance and high-temperature hardness. Additionally, the contraction and densification of Co during deep cryogenic treatment strengthen the Co’s grip on the WC particles. Physicists believe that deep cryogenic treatment alters the atomic and molecular structure of the metal, leading to improved properties.<\/p>\n

Genel olarak, derin kriyojenik i\u015flem, \u00f6ncelikle faz d\u00f6n\u00fc\u015f\u00fcm\u00fcn\u00fc g\u00fc\u00e7lendirme ve y\u00fczey art\u0131k gerilimini g\u00fc\u00e7lendirme mekanizmalar\u0131 yoluyla karb\u00fcr\u00fcn a\u015f\u0131nma direncini ve hizmet \u00f6mr\u00fcn\u00fc art\u0131r\u0131rken, fiziksel \u00f6zellikler \u00fczerindeki etkisi daha az belirgindir.<\/p><\/div>\n

<\/p>","protected":false},"excerpt":{"rendered":"

carbide\u00a0combines the excellent properties of hard phase and binding phase, thus possessing a series of advantages. It has high hardness (80-94 HRA) and wear resistance, especially maintaining high hardness and strength at higher temperatures. At 600\u00b0C, its hardness exceeds the room temperature hardness of high-speed steel, and at 1,000\u00b0C, its hardness surpasses the room temperature…<\/p>","protected":false},"author":2,"featured_media":21900,"comment_status":"open","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"_jetpack_memberships_contains_paid_content":false,"footnotes":""},"categories":[79],"tags":[],"jetpack_featured_media_url":"https:\/\/www.meetyoucarbide.com\/wp-content\/uploads\/2023\/05\/\u56fe\u72471121212.png","jetpack_sharing_enabled":true,"_links":{"self":[{"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/posts\/21898"}],"collection":[{"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/users\/2"}],"replies":[{"embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/comments?post=21898"}],"version-history":[{"count":0,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/posts\/21898\/revisions"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/media\/21900"}],"wp:attachment":[{"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/media?parent=21898"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/categories?post=21898"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/tags?post=21898"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}