{"id":21359,"date":"2022-08-29T10:53:30","date_gmt":"2022-08-29T02:53:30","guid":{"rendered":"https:\/\/www.meetyoucarbide.com\/?p=21359"},"modified":"2022-08-29T10:55:44","modified_gmt":"2022-08-29T02:55:44","slug":"why-is-youngs-modulus-almost-not-affected-by-the-3-factors-material-composition-microstructure-and-processing-state","status":"publish","type":"post","link":"https:\/\/www.meetyoucarbide.com\/tr\/neden-gencler-modulu-neredeyse-etkilenmiyor-the-3-faktorleri-materyal-kompozisyon-mikroyapi-ve-isleme-durumu\/","title":{"rendered":"Young mod\u00fcl\u00fc neden 3 fakt\u00f6rden neredeyse etkilenmiyor: malzeme bile\u015fimi, mikro yap\u0131 ve i\u015fleme durumu?"},"content":{"rendered":"
To know Young’s modulus well and answer this question on title bar, we need to think about how materials\u00a0get elasticity.<\/p>
Metal malzemeler i\u00e7in, i\u00e7lerinin atomlardan olu\u015ftu\u011funu, bir\u00e7ok atomun d\u00fczenli olarak kristaller olu\u015fturacak \u015fekilde d\u00fczenlendi\u011fini ve bir\u00e7ok tanenin genellikle g\u00f6rd\u00fc\u011f\u00fcm\u00fcz metali olu\u015fturmak \u00fczere bir araya getirildi\u011fini biliyoruz.<\/p>
Esneklik, taneler aras\u0131ndaki etkile\u015fimden mi gelir? A\u00e7\u0131k\u00e7as\u0131 hay\u0131r, \u00e7\u00fcnk\u00fc hem tek kristal hem de amorf esnekli\u011fe sahiptir.<\/p>
Bu nedenle, esneklik muhtemelen atomlar aras\u0131ndaki etkile\u015fimden gelir.<\/p>
In order to be as simple and convenient as possible, we try not to introduce complex concepts or mathematical formulas.\u00a0Let’s start with the\u00a0en basit iki atomlu model<\/strong>.<\/p> \u0130ki atomlu model: \u0130ki atom aras\u0131ndaki etkile\u015fim, potansiyel fonksiyonla (k\u0131rm\u0131z\u0131 \u00e7izgi) tan\u0131mlanabilir. Yatay eksen iki atom aras\u0131ndaki \u201cr\u201d mesafesidir ve dikey eksen U(r) potansiyel enerjisidir; Etkile\u015fim kuvveti (ye\u015fil hat), potansiyel fonksiyon t\u00fcretilerek elde edilebilir. \u0130ki atom aras\u0131nda, etkile\u015fim kuvveti F = 0 ve potansiyel enerjinin en d\u00fc\u015f\u00fck oldu\u011fu bir denge konumu r0r_ {0} oldu\u011funu belirtmekte fayda var; Yani bu pozisyondan \u00e7\u0131kt\u0131\u011f\u0131n\u0131zda sa\u011fda solda da olsa onu geri \u00e7ekmeye \u00e7al\u0131\u015fan bir kuvvet olacakt\u0131r.<\/p> Bir yay gibi, do\u011fal halde b\u00f6yle bir denge pozisyonu vard\u0131r. Yay\u0131 s\u0131ksan\u0131z da gerseniz de, elinizi b\u0131rakt\u0131ktan sonra hala orijinal konumuna geri d\u00f6ner.<\/p> Atom seviyesinden esnekli\u011fin kayna\u011f\u0131 budur!<\/p> Tabii ki, ger\u00e7ek metallerin veya di\u011fer malzemelerin i\u00e7inde bir\u00e7ok atom bulunur. Bu atomik etkile\u015fimler basit\u00e7e bir \u00e7ift atomik etkile\u015fimin \u00fcst \u00fcste binmesi olarak anla\u015f\u0131labilir.<\/p> Genel olarak, bu potansiyel fonksiyonun a\u015fa\u011f\u0131daki forma sahip oldu\u011funu varsayabiliriz:<\/p> Yukar\u0131daki fonksiyon, denge konumu R0R_ olan d\u00f6rt de\u011fi\u015fken parametreye sahiptir.{0}<\/strong>, Teklif enerjisi U0U_{0}<\/strong>, ve parametreleri N ve M. Yukar\u0131daki parametreler farkl\u0131 Atom t\u00fcrleri i\u00e7in de\u011fi\u015fiklik g\u00f6sterebilir.<\/p> \u015eimdi bu iki atomu ba\u011f\u0131ms\u0131z bir sistem olarak al\u0131yoruz ve onlar\u0131 geriyoruz veya s\u0131k\u0131\u015ft\u0131r\u0131yoruz.<\/p> Denge konumuna yak\u0131n iki atom aras\u0131ndaki mesafeyi de\u011fi\u015ftirmek i\u00e7in uygulanacak F kuvveti<\/p> In order to correspond to Young’s modulus, we need to change it into \u03c3= E \u03b5 Form, divide by one r02r on both sides_ {0} ^ {2} and substituting the above formula and pretend to operate:<\/p> That is\u00a0to say, Young’s modulus E is mainly affected by N, m, u0u_ {0}\u3001r0r_ {0}. The atomic species and temperature can affect these parameters. The influence of different atomic species is obvious, and all parameters will change. The effect of temperature seems less obvious.<\/strong><\/p> S\u0131cakl\u0131\u011f\u0131n etkisini g\u00f6zlemlemek i\u00e7in potansiyel fonksiyon e\u011frisinin kendisine geri d\u00f6nmeliyiz. Potansiyel fonksiyonu m\u00fckemmel bir simetrik e\u011fri olmad\u0131\u011f\u0131 i\u00e7in, s\u0131cakl\u0131k y\u00fckseldi\u011finde, atomun daha kuvvetli hareket etti\u011fi ve termal genle\u015fme ve so\u011fuk b\u00fcz\u00fclme gibi hareket aral\u0131\u011f\u0131n\u0131n daha b\u00fcy\u00fck oldu\u011fu anlam\u0131na gelir. Bu s\u0131rada, a\u015fa\u011f\u0131daki \u015fekilde ye\u015fil \u00e7izgi ile g\u00f6sterildi\u011fi gibi, r0r_ {0} bakiye konumu dengelenecektir.<\/strong><\/strong><\/p> It can be proved that atoms are always in motion. When the temperature is high, the equilibrium position r0r_ The larger {0}, the volume of the material increases and the young’s modulus decreases.<\/strong><\/strong><\/p> Back to our initial question, the number of iron atoms in different grades of steel can account for more than 90%. Even compared with pure iron, the interaction force between atoms does not change greatly, so its young’s modulus is hardly affected by the change of alloy composition; Similarly, no matter the microstructure changes or work hardening, the rearrangement of atoms does not change the force between atoms, so they do not affect young’s modulus.<\/strong><\/strong><\/p> In addition to Young’s modulus, physical quantities such as melting point, coefficient of thermal expansion and tensile strength of perfect crystal can also be derived from this model.<\/p> As for the abnormal phenomenon that the young’s modulus of rubber in high elastic state increases with the increase of temperature, it is because the source of rubber elasticity is different from that of conventional materials.<\/p><\/div>","protected":false},"excerpt":{"rendered":" To know Young’s modulus well and answer this question on title bar, we need to think about how materials\u00a0get elasticity. For metal materials, we know that their interior is composed of atoms, many atoms are arranged regularly to form crystals, and many grains are combined together to form the metal we usually see. Does elasticity…<\/p>","protected":false},"author":2,"featured_media":21370,"comment_status":"open","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"_jetpack_memberships_contains_paid_content":false,"footnotes":""},"categories":[79],"tags":[],"class_list":["post-21359","post","type-post","status-publish","format-standard","has-post-thumbnail","hentry","category-materials-weekly"],"jetpack_featured_media_url":"https:\/\/www.meetyoucarbide.com\/wp-content\/uploads\/2022\/08\/\u56fe\u724711-1.png","jetpack_sharing_enabled":true,"_links":{"self":[{"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/posts\/21359","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/users\/2"}],"replies":[{"embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/comments?post=21359"}],"version-history":[{"count":0,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/posts\/21359\/revisions"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/media\/21370"}],"wp:attachment":[{"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/media?parent=21359"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/categories?post=21359"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/tags?post=21359"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}Diatomic model of Young’s modulus<\/h2>
<\/figure>
<\/figure>
analysis of the relationship between Young’s modulus and other parameters <\/h2>
<\/figure>
<\/figure>
<\/figure>
<\/figure>
\u00c7\u00f6z\u00fcm <\/h2>
<\/figure>