{"id":1669,"date":"2019-05-22T02:47:38","date_gmt":"2019-05-22T02:47:38","guid":{"rendered":"http:\/\/www.meetyoucarbide.com\/single-post-the-science-of-high-resolution-electron-micro-graphs\/"},"modified":"2020-05-04T13:12:07","modified_gmt":"2020-05-04T13:12:07","slug":"the-science-of-high-resolution-electron-micro-graphs","status":"publish","type":"post","link":"https:\/\/www.meetyoucarbide.com\/tr\/the-science-of-high-resolution-electron-micro-graphs\/","title":{"rendered":"Y\u00fcksek \u00c7\u00f6z\u00fcn\u00fcrl\u00fckl\u00fc Elektron Mikro Grafikleri Bilimi"},"content":{"rendered":"
\n
\n
Y\u00fcksek \u00e7\u00f6z\u00fcn\u00fcrl\u00fckl\u00fc iletim elektron mikroskobu (HRTEM veya HREM) faz kontrast\u0131d\u0131r (y\u00fcksek \u00e7\u00f6z\u00fcn\u00fcrl\u00fckl\u00fc elektron mikroskopi g\u00f6r\u00fcnt\u00fclerinin kontrast\u0131, sentezlenen projeksiyon dalgas\u0131 ile k\u0131r\u0131nan dalga aras\u0131ndaki faz fark\u0131 taraf\u0131ndan olu\u015fturulur, buna faz kontrast\u0131 denir.) Mikroskopi kristalin malzemelerin \u00e7o\u011funun atomik bir d\u00fczenlemesini verir.<\/div>\n
High-resolution transmission electron microscopy began in the 1950s. In 1956, JWMenter directly observed parallel strips of 12 \u00c5 copper phthalocyanine with a resolution of 8 \u00c5 transmission electron microscope, and opened high-resolution electron microscopy. The door to surgery. In the early 1970s, in 1971, Iijima Chengman used a TEM with a resolution of 3.5 \u00c5 to capture the phase contrast image of Ti2Nb10O29, and directly observed the projection of the atomic group along the incident electron beam. At the same time, the research on high resolution image imaging theory and analysis technology has also made important progress. In the 1970s and 1980s, the electron microscope technology was continuously improved, and the resolution was greatly improved. Generally, the large TEM has been able to guarantee a crystal resolution of 1.44 \u00c5 and a dot resolution of 2 to 3 \u00c5. HRTEM can not only observe the lattice fringe image reflecting the interplanar spacing, but also observe the structural image of the arrangement of atoms or groups in the reaction crystal structure. Recently, Professor David A. Muller’s team at Cornell University in the United States used laminated imaging technology and an independently developed electron microscope pixel array detector to achieve a spatial resolution of 0.39 \u00c5 under low electron beam energy imaging conditions.<\/div>\n
G\u00fcn\u00fcm\u00fczde, transmisyon elektron mikroskoplar\u0131 genellikle HRTEM yapabilmektedir. Bu transmisyon elektron mikroskoplar\u0131 iki tipte s\u0131n\u0131fland\u0131r\u0131l\u0131r: y\u00fcksek \u00e7\u00f6z\u00fcn\u00fcrl\u00fck ve analitik. Y\u00fcksek \u00e7\u00f6z\u00fcn\u00fcrl\u00fckl\u00fc TEM, y\u00fcksek \u00e7\u00f6z\u00fcn\u00fcrl\u00fckl\u00fc objektif kutup par\u00e7as\u0131 ve \u00f6rnek tabla e\u011fim a\u00e7\u0131s\u0131n\u0131 k\u00fc\u00e7\u00fck yapan ve daha k\u00fc\u00e7\u00fck objektif k\u00fcresel sapma katsay\u0131s\u0131 ile sonu\u00e7lanan bir diyafram kombinasyonu ile donat\u0131lm\u0131\u015ft\u0131r; analitik TEM ise \u00e7e\u015fitli analizler i\u00e7in daha b\u00fcy\u00fck bir miktar gerektirir. \u00d6rnek a\u015famas\u0131n\u0131n e\u011fim a\u00e7\u0131s\u0131, b\u00f6ylece objektif lens dire\u011fi pabucu y\u00fcksek \u00e7\u00f6z\u00fcn\u00fcrl\u00fck t\u00fcr\u00fcnden farkl\u0131 olarak kullan\u0131l\u0131r, b\u00f6ylece \u00e7\u00f6z\u00fcn\u00fcrl\u00fc\u011f\u00fc etkiler. Genel olarak, 200 kev y\u00fcksek \u00e7\u00f6z\u00fcn\u00fcrl\u00fckl\u00fc TEM 1,9 \u00c5 \u00e7\u00f6z\u00fcn\u00fcrl\u00fc\u011fe sahiptir, 200 kev analitik TEM ise 2,3 \u00c5 de\u011ferine sahiptir. Ancak bu, analitik TEM \u00e7ekiminin y\u00fcksek \u00e7\u00f6z\u00fcn\u00fcrl\u00fckl\u00fc g\u00f6r\u00fcnt\u00fcs\u00fcn\u00fc etkilemez.<\/div>\n

\"\"<\/p>\n

As shown in Fig. 1, the optical path diagram of the high-resolution electron microscopy imaging process, when an electron beam with a certain wavelength (\u03bb) is incident on a crystal with a crystal plane spacing d, the Bragg condition (2dsin \u03b8 = \u03bb) is satisfied, A diffracted wave is generated at an angle (2\u03b8). This diffracted wave converges on the back focal plane of the objective lens to form a diffraction spot (in an electron microscope, a regular diffraction spot formed on the back focal plane is projected onto the phosphor screen, which is a so-called electron diffraction pattern). When the diffracted wave on the back focal plane continues to move forward, the diffracted wave is synthesized, an enlarged image (electron microscopic image) is formed on the image plane, and two or more large objective lens stops can be inserted on the back focal plane. Wave interference imaging, called high-resolution electron microscopy, is called a high-resolution electron microscopic image (high-resolution microscopic image).<\/div>\n
Yukar\u0131da belirtildi\u011fi gibi, y\u00fcksek \u00e7\u00f6z\u00fcn\u00fcrl\u00fckl\u00fc elektron mikroskobik g\u00f6r\u00fcnt\u00fc, objektif merce\u011fin odak d\u00fczleminin iletilen \u0131\u015f\u0131n\u0131 ve birka\u00e7 k\u0131r\u0131lm\u0131\u015f \u0131\u015f\u0131n\u0131, faz tutarl\u0131l\u0131klar\u0131 nedeniyle objektif g\u00f6z bebe\u011finden ge\u00e7irerek olu\u015fturulan bir faz kontrast mikroskobik g\u00f6r\u00fcnt\u00fcd\u00fcr. G\u00f6r\u00fcnt\u00fclemeye kat\u0131lan k\u0131r\u0131n\u0131m demeti say\u0131s\u0131ndaki farkl\u0131l\u0131k nedeniyle, farkl\u0131 adlarda y\u00fcksek \u00e7\u00f6z\u00fcn\u00fcrl\u00fckl\u00fc g\u00f6r\u00fcnt\u00fcler elde edilir. Farkl\u0131 k\u0131r\u0131n\u0131m ko\u015fullar\u0131 ve \u00f6rnek kal\u0131nl\u0131\u011f\u0131 nedeniyle, farkl\u0131 yap\u0131sal bilgilere sahip y\u00fcksek \u00e7\u00f6z\u00fcn\u00fcrl\u00fckl\u00fc elektron mikrograflar\u0131 be\u015f kategoriye ayr\u0131labilir: kafes sa\u00e7aklar, tek boyutlu yap\u0131sal g\u00f6r\u00fcnt\u00fcler, iki boyutlu kafes g\u00f6r\u00fcnt\u00fcleri (tek h\u00fccreli g\u00f6r\u00fcnt\u00fcler), iki boyutlu yap\u0131 g\u00f6r\u00fcnt\u00fcs\u00fc (atom \u00f6l\u00e7e\u011fi g\u00f6r\u00fcnt\u00fcs\u00fc: kristal yap\u0131 g\u00f6r\u00fcnt\u00fcs\u00fc), \u00f6zel g\u00f6r\u00fcnt\u00fc.<\/div>\n
Kafes sa\u00e7aklar\u0131: Arka odak d\u00fczlemindeki bir iletim \u0131\u015f\u0131n\u0131 objektif mercek taraf\u0131ndan se\u00e7ilirse ve bir k\u0131r\u0131n\u0131m \u0131\u015f\u0131n\u0131 birbiriyle etkile\u015firse, yo\u011funlukta periyodik bir de\u011fi\u015fiklik olan tek boyutlu bir sa\u00e7ak deseni elde edilir (siyah \u00fc\u00e7genle g\u00f6sterildi\u011fi gibi) \u015eekil 2 (f)) Bu, bir sa\u00e7ak sa\u00e7ak ve bir kafes g\u00f6r\u00fcnt\u00fc ile elektron \u0131\u015f\u0131n\u0131n\u0131n kafes d\u00fczlemine tam olarak paralel olmas\u0131n\u0131 gerektirmeyen yap\u0131sal bir g\u00f6r\u00fcnt\u00fc aras\u0131ndaki farkt\u0131r. Asl\u0131nda, kristalitlerin, \u00e7\u00f6keltilerin ve benzerlerinin g\u00f6zlenmesinde, kafes sa\u00e7aklar\u0131 genellikle bir izd\u00fc\u015f\u00fcm dalgas\u0131 ile bir k\u0131r\u0131n\u0131m dalgas\u0131 aras\u0131ndaki giri\u015fim ile elde edilir. Kristalitler gibi bir maddenin elektron k\u0131r\u0131n\u0131m paterni foto\u011fraflan\u0131rsa, \u015eekil 2'nin (a) 'da g\u00f6sterildi\u011fi gibi bir ibadet halkas\u0131 g\u00f6r\u00fcnecektir.<\/div>\n

\"\"<\/p>\n

Tek boyutlu yap\u0131 g\u00f6r\u00fcnt\u00fcs\u00fc: Numunenin belirli bir e\u011fimi varsa, elektron \u0131\u015f\u0131n\u0131 kristalin belirli bir kristal d\u00fczlemine paralel olacak \u015fekilde, \u015eekil 2 (b) 'de g\u00f6sterilen tek boyutlu k\u0131r\u0131n\u0131m k\u0131r\u0131n\u0131m modelini tatmin edebilir. iletim noktas\u0131na g\u00f6re simetrik da\u011f\u0131l\u0131m) K\u0131r\u0131n\u0131m modeli). Bu k\u0131r\u0131n\u0131m modelinde, optimum odak ko\u015fulu alt\u0131nda \u00e7ekilen y\u00fcksek \u00e7\u00f6z\u00fcn\u00fcrl\u00fckl\u00fc g\u00f6r\u00fcnt\u00fc kafes sa\u00e7aktan farkl\u0131d\u0131r ve tek boyutlu yap\u0131 g\u00f6r\u00fcnt\u00fcs\u00fc, g\u00f6sterildi\u011fi gibi kristal yap\u0131 bilgisini, yani elde edilen tek boyutlu yap\u0131 g\u00f6r\u00fcnt\u00fcs\u00fcn\u00fc i\u00e7erir. \u015eekil 3'te (g\u00f6sterilen Bi-bazl\u0131 s\u00fcperiletken oksidin y\u00fcksek \u00e7\u00f6z\u00fcn\u00fcrl\u00fckl\u00fc bir boyutlu yap\u0131sal g\u00f6r\u00fcnt\u00fcs\u00fc.<\/div>\n
Two-dimensional lattice image: If the electron beam is incident parallel to a certain crystal axis, a two-dimensional diffraction pattern can be obtained (two-dimensional symmetric distribution with respect to the central transmission spot, shown in Fig. 2(c)). For such an electron diffraction pattern. In the vicinity of the transmission spot, a diffraction wave reflecting the crystal unit cell appears. In the two-dimensional image generated by the interference between the diffracted wave and the transmitted wave, a two-dimensional lattice image showing the unit cell can be observed, and this image contains information on the unit cell scale. However, information that does not contain an atomic scale (into atomic arrangement), that is, a two-dimensional lattice image is a two-dimensional lattice image of single crystal silicon as shown in Fig. 3(d).<\/div>\n
Two-dimensional structure image: a diffraction pattern as shown in Fig. 2(d) is obtained. When a high-resolution electron microscope image is observed with such a diffraction pattern, the more diffraction waves involved in imaging, the information contained in the high-resolution image is also The more. A high-resolution two-dimensional structure image of the Tl2Ba2CuO6 superconducting oxide is shown in Fig. 3(e). However, the diffraction of the high-wavelength side with higher resolution limit of the electron microscope is unlikely to participate in the imaging of the correct structure information, and becomes the background. Therefore, within the range allowed by the resolution. By imaging with as many diffracted waves as possible, it is possible to obtain an image containing the correct information of the arrangement of atoms within the unit cell. The structure image can only be observed in a thin region excited by the proportional relationship between the wave participating in imaging and the thickness of the sample.<\/div>\n

\"\"<\/p>\n

\u00d6zel g\u00f6r\u00fcnt\u00fc: Arka odak d\u00fczleminin k\u0131r\u0131n\u0131m modelinde, a\u00e7\u0131kl\u0131\u011f\u0131n yerle\u015ftirilmesi sadece belirli yap\u0131sal bilginin kontrast\u0131n\u0131n g\u00f6r\u00fcnt\u00fcs\u00fcn\u00fc g\u00f6zlemleyebilmek i\u00e7in belirli dalga g\u00f6r\u00fcnt\u00fclemesini se\u00e7er. Bunun tipik bir \u00f6rne\u011fi gibi d\u00fczenli bir yap\u0131d\u0131r. Kar\u015f\u0131l\u0131k gelen elektron k\u0131r\u0131n\u0131m paterni \u015eekil 2 (e) 'de Au, Cd s\u0131ral\u0131 ala\u015f\u0131m\u0131n elektron k\u0131r\u0131n\u0131m paterni olarak g\u00f6sterilmi\u015ftir. S\u0131ral\u0131 yap\u0131, Cd atomlar\u0131n\u0131n s\u0131rayla d\u00fczenlendi\u011fi y\u00fcz merkezli bir k\u00fcbik yap\u0131ya dayan\u0131r. \u015eekil 2 (e) (020) ve (008) indekslerinin temel \u00f6rg\u00fc yans\u0131malar\u0131 d\u0131\u015f\u0131nda elektron k\u0131r\u0131n\u0131m paternleri zay\u0131ft\u0131r. S\u0131ral\u0131 kafes yans\u0131mas\u0131, temel kafes yans\u0131mas\u0131n\u0131 \u00e7\u0131karmak i\u00e7in objektif lensi kullanarak, iletim dalgalar\u0131n\u0131 ve d\u00fczenli kafes yans\u0131mas\u0131 g\u00f6r\u00fcnt\u00fclemesini kullanarak, sadece \u015eekil 4'te g\u00f6sterildi\u011fi gibi parlak noktalara veya y\u00fcksek \u00e7\u00f6z\u00fcn\u00fcrl\u00fck gibi koyu noktalara sahip Cd atomlar\u0131na.<\/div>\n

\"\"<\/p>\n

\u015eekil 4'te g\u00f6sterildi\u011fi gibi, g\u00f6sterilen y\u00fcksek \u00e7\u00f6z\u00fcn\u00fcrl\u00fckl\u00fc g\u00f6r\u00fcnt\u00fc, numunenin kal\u0131nl\u0131\u011f\u0131na g\u00f6re optimum y\u00fcksek \u00e7\u00f6z\u00fcn\u00fcrl\u00fckl\u00fc d\u00fc\u015f\u00fck netlemeye yak\u0131n olarak de\u011fi\u015fir. Bu nedenle, y\u00fcksek \u00e7\u00f6z\u00fcn\u00fcrl\u00fckl\u00fc bir g\u00f6r\u00fcnt\u00fc elde etti\u011fimizde, y\u00fcksek \u00e7\u00f6z\u00fcn\u00fcrl\u00fckl\u00fc g\u00f6r\u00fcnt\u00fcn\u00fcn ne oldu\u011funu s\u00f6yleyemeyiz. \u00d6ncelikle malzemenin yap\u0131s\u0131n\u0131 farkl\u0131 kal\u0131nl\u0131klarda hesaplamak i\u00e7in bir bilgisayar sim\u00fclasyonu yapmal\u0131y\u0131z. Maddenin y\u00fcksek \u00e7\u00f6z\u00fcn\u00fcrl\u00fckl\u00fc g\u00f6r\u00fcnt\u00fcs\u00fc. Bilgisayar taraf\u0131ndan hesaplanan bir dizi y\u00fcksek \u00e7\u00f6z\u00fcn\u00fcrl\u00fckl\u00fc g\u00f6r\u00fcnt\u00fc, deney taraf\u0131ndan elde edilen y\u00fcksek \u00e7\u00f6z\u00fcn\u00fcrl\u00fckl\u00fc g\u00f6r\u00fcnt\u00fcleri belirlemek i\u00e7in deney taraf\u0131ndan elde edilen y\u00fcksek \u00e7\u00f6z\u00fcn\u00fcrl\u00fckl\u00fc g\u00f6r\u00fcnt\u00fclerle kar\u015f\u0131la\u015ft\u0131r\u0131l\u0131r. \u015eekil 5'te g\u00f6sterilen bilgisayar sim\u00fclasyon g\u00f6r\u00fcnt\u00fcs\u00fc, deney taraf\u0131ndan elde edilen y\u00fcksek \u00e7\u00f6z\u00fcn\u00fcrl\u00fckl\u00fc g\u00f6r\u00fcnt\u00fc ile kar\u015f\u0131la\u015ft\u0131r\u0131lmaktad\u0131r.<\/div>\n

\"\"<\/div>\n<\/div>\n

<\/p>","protected":false},"excerpt":{"rendered":"

High resolution transmission electron microscopy (HRTEM or HREM) is the phase contrast (the contrast of high-resolution electron microscopy images is formed by the phase difference between the synthesized projected wave and the diffracted wave, It is called phase contrast.) Microscopy, which gives an atomic arrangement of most crystalline materials. High-resolution transmission electron microscopy began in…<\/p>","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"_jetpack_memberships_contains_paid_content":false,"footnotes":""},"categories":[79],"tags":[],"jetpack_featured_media_url":"","jetpack_sharing_enabled":true,"_links":{"self":[{"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/posts\/1669"}],"collection":[{"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/comments?post=1669"}],"version-history":[{"count":0,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/posts\/1669\/revisions"}],"wp:attachment":[{"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/media?parent=1669"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/categories?post=1669"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/tr\/wp-json\/wp\/v2\/tags?post=1669"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}