欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

Yüksek ??zünürlüklü iletim elektron mikroskobu (HRTEM veya HREM) faz kontrast?d?r (yüksek ??zünürlüklü elektron mikroskopi g?rüntülerinin kontrast?, sentezlenen projeksiyon dalgas? ile k?r?nan dalga aras?ndaki faz fark? taraf?ndan olu?turulur, buna faz kontrast? denir.) Mikroskopi kristalin malzemelerin ?o?unun atomik bir düzenlemesini verir.
High-resolution transmission electron microscopy began in the 1950s. In 1956, JWMenter directly observed parallel strips of 12 ? copper phthalocyanine with a resolution of 8 ? transmission electron microscope, and opened high-resolution electron microscopy. The door to surgery. In the early 1970s, in 1971, Iijima Chengman used a TEM with a resolution of 3.5 ? to capture the phase contrast image of Ti2Nb10O29, and directly observed the projection of the atomic group along the incident electron beam. At the same time, the research on high resolution image imaging theory and analysis technology has also made important progress. In the 1970s and 1980s, the electron microscope technology was continuously improved, and the resolution was greatly improved. Generally, the large TEM has been able to guarantee a crystal resolution of 1.44 ? and a dot resolution of 2 to 3 ?. HRTEM can not only observe the lattice fringe image reflecting the interplanar spacing, but also observe the structural image of the arrangement of atoms or groups in the reaction crystal structure. Recently, Professor David A. Muller’s team at Cornell University in the United States used laminated imaging technology and an independently developed electron microscope pixel array detector to achieve a spatial resolution of 0.39 ? under low electron beam energy imaging conditions.
Günümüzde, transmisyon elektron mikroskoplar? genellikle HRTEM yapabilmektedir. Bu transmisyon elektron mikroskoplar? iki tipte s?n?fland?r?l?r: yüksek ??zünürlük ve analitik. Yüksek ??zünürlüklü TEM, yüksek ??zünürlüklü objektif kutup par?as? ve ?rnek tabla e?im a??s?n? kü?ük yapan ve daha kü?ük objektif küresel sapma katsay?s? ile sonu?lanan bir diyafram kombinasyonu ile donat?lm??t?r; analitik TEM ise ?e?itli analizler i?in daha büyük bir miktar gerektirir. ?rnek a?amas?n?n e?im a??s?, b?ylece objektif lens dire?i pabucu yüksek ??zünürlük türünden farkl? olarak kullan?l?r, b?ylece ??zünürlü?ü etkiler. Genel olarak, 200 kev yüksek ??zünürlüklü TEM 1,9 ? ??zünürlü?e sahiptir, 200 kev analitik TEM ise 2,3 ? de?erine sahiptir. Ancak bu, analitik TEM ?ekiminin yüksek ??zünürlüklü g?rüntüsünü etkilemez.

The Science of High-resolution Electron Micro-graphs 1

As shown in Fig. 1, the optical path diagram of the high-resolution electron microscopy imaging process, when an electron beam with a certain wavelength (λ) is incident on a crystal with a crystal plane spacing d, the Bragg condition (2dsin θ = λ) is satisfied, A diffracted wave is generated at an angle (2θ). This diffracted wave converges on the back focal plane of the objective lens to form a diffraction spot (in an electron microscope, a regular diffraction spot formed on the back focal plane is projected onto the phosphor screen, which is a so-called electron diffraction pattern). When the diffracted wave on the back focal plane continues to move forward, the diffracted wave is synthesized, an enlarged image (electron microscopic image) is formed on the image plane, and two or more large objective lens stops can be inserted on the back focal plane. Wave interference imaging, called high-resolution electron microscopy, is called a high-resolution electron microscopic image (high-resolution microscopic image).
Yukar?da belirtildi?i gibi, yüksek ??zünürlüklü elektron mikroskobik g?rüntü, objektif merce?in odak düzleminin iletilen ???n? ve birka? k?r?lm?? ???n?, faz tutarl?l?klar? nedeniyle objektif g?z bebe?inden ge?irerek olu?turulan bir faz kontrast mikroskobik g?rüntüdür. G?rüntülemeye kat?lan k?r?n?m demeti say?s?ndaki farkl?l?k nedeniyle, farkl? adlarda yüksek ??zünürlüklü g?rüntüler elde edilir. Farkl? k?r?n?m ko?ullar? ve ?rnek kal?nl??? nedeniyle, farkl? yap?sal bilgilere sahip yüksek ??zünürlüklü elektron mikrograflar? be? kategoriye ayr?labilir: kafes sa?aklar, tek boyutlu yap?sal g?rüntüler, iki boyutlu kafes g?rüntüleri (tek hücreli g?rüntüler), iki boyutlu yap? g?rüntüsü (atom ?l?e?i g?rüntüsü: kristal yap? g?rüntüsü), ?zel g?rüntü.
Kafes sa?aklar?: Arka odak düzlemindeki bir iletim ???n? objektif mercek taraf?ndan se?ilirse ve bir k?r?n?m ???n? birbiriyle etkile?irse, yo?unlukta periyodik bir de?i?iklik olan tek boyutlu bir sa?ak deseni elde edilir (siyah ü?genle g?sterildi?i gibi) ?ekil 2 (f)) Bu, bir sa?ak sa?ak ve bir kafes g?rüntü ile elektron ???n?n?n kafes düzlemine tam olarak paralel olmas?n? gerektirmeyen yap?sal bir g?rüntü aras?ndaki farkt?r. Asl?nda, kristalitlerin, ??keltilerin ve benzerlerinin g?zlenmesinde, kafes sa?aklar? genellikle bir izdü?üm dalgas? ile bir k?r?n?m dalgas? aras?ndaki giri?im ile elde edilir. Kristalitler gibi bir maddenin elektron k?r?n?m paterni foto?raflan?rsa, ?ekil 2'nin (a) 'da g?sterildi?i gibi bir ibadet halkas? g?rünecektir.

The Science of High-resolution Electron Micro-graphs 2

Tek boyutlu yap? g?rüntüsü: Numunenin belirli bir e?imi varsa, elektron ???n? kristalin belirli bir kristal düzlemine paralel olacak ?ekilde, ?ekil 2 (b) 'de g?sterilen tek boyutlu k?r?n?m k?r?n?m modelini tatmin edebilir. iletim noktas?na g?re simetrik da??l?m) K?r?n?m modeli). Bu k?r?n?m modelinde, optimum odak ko?ulu alt?nda ?ekilen yüksek ??zünürlüklü g?rüntü kafes sa?aktan farkl?d?r ve tek boyutlu yap? g?rüntüsü, g?sterildi?i gibi kristal yap? bilgisini, yani elde edilen tek boyutlu yap? g?rüntüsünü i?erir. ?ekil 3'te (g?sterilen Bi-bazl? süperiletken oksidin yüksek ??zünürlüklü bir boyutlu yap?sal g?rüntüsü.
Two-dimensional lattice image: If the electron beam is incident parallel to a certain crystal axis, a two-dimensional diffraction pattern can be obtained (two-dimensional symmetric distribution with respect to the central transmission spot, shown in Fig. 2(c)). For such an electron diffraction pattern. In the vicinity of the transmission spot, a diffraction wave reflecting the crystal unit cell appears. In the two-dimensional image generated by the interference between the diffracted wave and the transmitted wave, a two-dimensional lattice image showing the unit cell can be observed, and this image contains information on the unit cell scale. However, information that does not contain an atomic scale (into atomic arrangement), that is, a two-dimensional lattice image is a two-dimensional lattice image of single crystal silicon as shown in Fig. 3(d).
Two-dimensional structure image: a diffraction pattern as shown in Fig. 2(d) is obtained. When a high-resolution electron microscope image is observed with such a diffraction pattern, the more diffraction waves involved in imaging, the information contained in the high-resolution image is also The more. A high-resolution two-dimensional structure image of the Tl2Ba2CuO6 superconducting oxide is shown in Fig. 3(e). However, the diffraction of the high-wavelength side with higher resolution limit of the electron microscope is unlikely to participate in the imaging of the correct structure information, and becomes the background. Therefore, within the range allowed by the resolution. By imaging with as many diffracted waves as possible, it is possible to obtain an image containing the correct information of the arrangement of atoms within the unit cell. The structure image can only be observed in a thin region excited by the proportional relationship between the wave participating in imaging and the thickness of the sample.

The Science of High-resolution Electron Micro-graphs 3

?zel g?rüntü: Arka odak düzleminin k?r?n?m modelinde, a??kl???n yerle?tirilmesi sadece belirli yap?sal bilginin kontrast?n?n g?rüntüsünü g?zlemleyebilmek i?in belirli dalga g?rüntülemesini se?er. Bunun tipik bir ?rne?i gibi düzenli bir yap?d?r. Kar??l?k gelen elektron k?r?n?m paterni ?ekil 2 (e) 'de Au, Cd s?ral? ala??m?n elektron k?r?n?m paterni olarak g?sterilmi?tir. S?ral? yap?, Cd atomlar?n?n s?rayla düzenlendi?i yüz merkezli bir kübik yap?ya dayan?r. ?ekil 2 (e) (020) ve (008) indekslerinin temel ?rgü yans?malar? d???nda elektron k?r?n?m paternleri zay?ft?r. S?ral? kafes yans?mas?, temel kafes yans?mas?n? ??karmak i?in objektif lensi kullanarak, iletim dalgalar?n? ve düzenli kafes yans?mas? g?rüntülemesini kullanarak, sadece ?ekil 4'te g?sterildi?i gibi parlak noktalara veya yüksek ??zünürlük gibi koyu noktalara sahip Cd atomlar?na.

The Science of High-resolution Electron Micro-graphs 4

?ekil 4'te g?sterildi?i gibi, g?sterilen yüksek ??zünürlüklü g?rüntü, optimum yüksek ??zünürlüklü alt odak noktas?na yak?n numunenin kal?nl???na g?re de?i?ir. Bu nedenle yüksek ??zünürlüklü bir g?rüntü elde etti?imizde, yüksek ??zünürlüklü g?rüntünün ne oldu?unu basit?e s?yleyemeyiz. Malzemenin farkl? kal?nl?klardaki yap?s?n? hesaplamak i?in ?ncelikle bir bilgisayar simülasyonu yapmal?y?z. Maddenin yüksek ??zünürlüklü g?rüntüsü. Bilgisayar taraf?ndan hesaplanan bir dizi yüksek ??zünürlüklü g?rüntü, deneyle elde edilen yüksek ??zünürlüklü g?rüntülerle kar??la?t?r?larak deneyle elde edilen yüksek ??zünürlüklü g?rüntüler belirlenir. ?ekil 5'te g?sterilen bilgisayar simülasyon g?rüntüsü, deneyle elde edilen yüksek ??zünürlüklü g?rüntüyle kar??la?t?r?lm??t?r.

The Science of High-resolution Electron Micro-graphs 5

Bir cevap yaz?n

E-posta hesab?n?z yay?mlanmayacak. Gerekli alanlar * ile i?aretlenmi?lerdir

六安市| 黄大仙区| 宜春市| 莱西市| 定陶县| 邢台县| 务川| 五华县| 满城县| 敦化市| 曲沃县| 青龙| 茂名市| 安平县| 睢宁县| 慈溪市| 自贡市| 额尔古纳市| 海南省| 大理市| 方山县| 重庆市| 江北区| 呼和浩特市| 洛宁县| 东阿县| 稻城县| 汕头市| 石棉县| 普陀区| 湟源县| 威远县| 扎赉特旗| 新竹县| 沁阳市| 南丹县| 海安县| 台江县| 涞源县| 高安市| 靖安县|