欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

The extrusion technology for tungsten karbür mixed materials has made significant advancements in terms of raw material grades, extrusion processes, and supporting equipment for extrusion production. Currently, it is possible to produce carbide extruded rods with diameters ranging from 0.5 to 34mm. The variety of extruded products is increasing, including rods, tubes, plates, solid mills, helical mills, and rods with double helical cooling holes or triple helical cooling holes, among others.

carbide extrusion forming products

Development of Grades

Due to the combination of coating technology and the carbide matrix with high toughness and high hardness, the market segmentation of standard K and P type carbides is changing, and the application range of K type carbides is still expanding. The development process of extruded grades is as follows.

How does the Grade of Tungsten Carbide Extrusion Forming Products Develop in China? 2

How does the Grade of Tungsten Carbide Extrusion Forming Products Develop in China? 3How does the Grade of Tungsten Carbide Extrusion Forming Products Develop in China? 4

K10/20, with a cobalt content of about 6%, contains approximately 0.2% VC and 1% TaC, and the grain size of WC is between 1.0 and 1.5 μm. Since large TaC grains (>2 μm) are prone to premature shedding during cutting, and also reduce the toughness of the carbide, which is the biggest taboo for K-type carbides, the TaC in this grade carbide?has been replaced by Cr?C?. Subsequently, the K20F grade appeared, with a cobalt content of about 8%, and the WC grain size reached 0.7 μm, mainly used for PCB micro-drills and twist drills. When extended to cutters for paper processing, the cobalt content increased to 8.5%, and the WC grain size was 1.0 to 1.5 μm. Jinlu Company’s GK10, GK20, and GK20UF correspond to these grades. The typical microstructures of GK10, GK20, and GK20UF grade carbides are shown in Figures 1, 2, 3, and 4.

How does the Grade of Tungsten Carbide Extrusion Forming Products Develop in China? 5

How does the Grade of Tungsten Carbide Extrusion Forming Products Develop in China? 6

How does the Grade of Tungsten Carbide Extrusion Forming Products Develop in China? 7

ISO grade K30-K40, with a cobalt content of 10%, also adds Cr?C? and VC. The WC grain size is between 0.6 and 0.8 μm. This grade of carbide?has high strength (TRS reaching 4000 MPa), high hardness (HRA 92.2), and high wear resistance. It is important to note that the total content and the ratio of Cr?C? and VC have a significant impact on the hardness and strength of the carbide, and for different processing objects, the content and proportion of Cr?C? and VC need to be selected. To this day, this grade is still one of the main grades for rods. Jinlu Company’s GK30F grade corresponds to this. The typical microstructure of the GK30F grade carbide?is shown in Figures 5 and 6.

How does the Grade of Tungsten Carbide Extrusion Forming Products Develop in China? 8

Japanese manufacturers were the first to develop hard metal drills and end mills with a cobalt content of 12%, while also adding Cr?C? and VC (totaling 1.2%), with a WC grain size of 0.4 μm. The wear resistance and toughness of this grade of carbide?are significantly improved, thereby significantly extending the tool life. It has outstanding advantages in the processing fields of hardened steel, stainless steel, titanium carbides, and glass fiber-reinforced plastics. The processing performance advantages of this grade are becoming more apparent and it is replacing the GK30F grade in many application areas. Jinlu Company’s GK40UF grade corresponds to this. The typical microstructure of the GK40UF grade carbide?is shown in Figures 7 and 8.

How does the Grade of Tungsten Carbide Extrusion Forming Products Develop in China? 9

The ultra-fine grade currently under development, which contains a cobalt content of 12% and a WC grain size of 0.2 μm to 0.3 μm, and also contains VC and Cr?C? inhibitors, is widely favored by the industry. The microstructure of the test sample for Jinlu Company’s GK30SF grade is shown in Figure 9.

Tables 1 and 2 list the composition and performance indicators of the aforementioned grades.

How does the Grade of Tungsten Carbide Extrusion Forming Products Develop in China? 10

How does the Grade of Tungsten Carbide Extrusion Forming Products Develop in China? 11

 

Development of Production Technology

Production Method of Extrusion Materials

The production process of extrusion materials is as follows: wet grinding (both rolling ball milling and stirring ball milling can be used) → slurry drying → blending with a forming agent → screening and granulating. It must be noted that a considerable number of extruded product grades contain one or two types of trace grain growth inhibitors, therefore the selection of WC powder and cobalt powder grades and the method of adding grain growth inhibitors will fundamentally affect the performance of the carbide.

Extrusion Methods

Currently, the extrusion machines used in the production of hard metal extrusions include plunger extruders and screw extruders.

Plunger extruders’ output per working cycle is limited by the volume of the plunger cavity. Different tonnage plunger extruders have varying single loading quantities, ranging from a few kilograms to several dozen kilograms. Their advantage is flexible production scheduling, convenient switching between different grades of materials, and minimal material loss.

Screw extruders have almost unlimited production capacity, with continuous feeding and extrusion, which is highly suitable for the mass production of established grades. The downside of screw extruders is that equipment cleaning and installation are time-consuming when switching grades, and there is a significant waste of materials.

How does the Grade of Tungsten Carbide Extrusion Forming Products Develop in China? 12

Both plunger extruders and screw extruders, advanced extrusion technology manufacturers have made progress in the automatic placement and automatic cutting of the compact. The extrusion molding of porous synchronous extrusion and double helix cooled bar stock is a reflection of the overall advancement of extrusion technology (see Figures 10 and 11).

Method of Removing Forming Agents

The composition of the extrusion forming agents and the corresponding process for removing them are topics that manufacturers have continuously researched. The motivation for this research comes from reducing costs and improving the dimensional limits of extruded molding. The traditional process involves removing the forming agent in a hydrogen atmosphere, followed by vacuum low-pressure sintering. Technologically advanced manufacturers have made breakthroughs in forming agent research, with the extrusion blank first being dried in an oven (without the need for a protective atmosphere) before undergoing vacuum low-pressure sintering. The drying process and equipment are shown in Figures 12 and 13.

How does the Grade of Tungsten Carbide Extrusion Forming Products Develop in China? 13

 

Sintering Technology

Extruded profiles all use vacuum low-pressure sintering processes to ensure the uniformity of the product’s material and the stability of production.

 

Inspection and Performance Evaluation

In addition to the conventional analysis indicators of the carbide, the quality inspection of extruded profiles also includes ultrasonic testing for the sintered blanks of rods with a diameter of more than 12mm. Attention should be paid to the dispersion of the product’s bending strength and the fluctuation of the coercive force. For micro-drill rod materials used in PCBs, special attention must be given to controlling the carbide’s hardness, bending strength, and magnetic saturation value; all three indicators must be controlled simultaneously.

How does the Grade of Tungsten Carbide Extrusion Forming Products Develop in China? 14

??züm

Just like with die-pressed cemented carbide products, there is a significant gap between China’s extruded cemented carbide profiles and the world’s advanced level. The main aspects of this gap are as follows:

  • Material quality disparities
  • Disparities in binder and pre-sintering technology
  • Inability to produce, or produce stably in bulk, cutting-edge products
  • Automation disparities
  • Stability of industrial production (within the same batch or between different batches)

Therefore, we should increase our research and development efforts in the aforementioned areas to quickly narrow the gap with the world’s advanced level. This will provide reliable domestically produced cutting tools for China’s emerging electronic industry and machinery manufacturing industry.

Bir cevap yaz?n

E-posta hesab?n?z yay?mlanmayacak. Gerekli alanlar * ile i?aretlenmi?lerdir

裸体午夜一级视频| 国产又粗又猛又色又免费| 手机成人三级a在线观看| 亚洲综合极品香蕉久久网| 大鸡巴操大屁股美女视频| 欧美高清一二三区| 日韩欧美人妻综合| 久久久五月性色视频| 国产亚洲精品一区久久| 亚洲 欧美 精品 高清| 黑丝美女被操哭边操边尿| 精品一区二区久久久久无码| 波多野结衣高潮尿喷| 日本高清一区二区三区水蜜桃| 精品国产自在现线看| 色老头av亚洲三区三区| 爆乳1把你榨干在线观看| 99久久九九爱精品国产| 骚逼被操视频拳交| 国产欧美一二区不卡视频| 涩涩屋操美女视频| 草草久性色av综合av| 把女生操出水的视频| 欲色福利网免费在线播放| 久久69精品久久久久免| 国产精品999午夜激情| 大鸡巴射在穴穴里的视频| 国产一级第一级毛片| 99久久国产综合精品女| 91热国产在线观看| 黑人巨茎和中国美女视频| 奇米一区二区三区视频在线观看| 操老骚逼三级黄视频| 一个色综合色综合色综合| 99热这里有精品在线观看| 自拍偷拍视频颜射| 久久精品国产自清天天线| 国产午夜福利视频第三区| 99久久99久久精品视频| 日逼动态视频免费看| 色综合色狠狠天天综合色|