欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

As an essential consumable in the field of chip packaging, capillary tips have broad development prospects.

The capillary tip is a critical tool in the wire bonding process, with high value and being a perishable item. The selection and performance of the capillary tip determine the flexibility, reliability, and cost-effectiveness of the bonding.

What is the Capillary Tip in the Industry of Chip Pachaging? 2

Classification of Capillary Tips Based on Shape

capillary tips include those used in ball bonding (capillary tip type) and those used in wedge bonding (wedge type). The two types are fundamentally different.

Wedge Capillary Tip

The main body of a wedge capillary tip is typically cylindrical, with a wedge-shaped head. The back of the capillary tip has a hole for threading the bonding wire, and the hole diameter corresponds to the wire size. The tip face of the wedge capillary tip comes in various structures depending on application requirements, and it determines the size and morphology of the bond.

During use, the wire is threaded through the capillary tip hole, forming a 30°–60° angle with the bonding surface. When the capillary tip descends onto the bonding area, it presses the wire against the surface, forming a shovel-shaped or crescent-shaped bond. Some examples of wedge capillary tips are shown in Figure 1.

Fig.1 wedge capillary tips
Fig.1 wedge capillary tips

 

Capillary Tip Materials

During operation, the bonding wire passing through the capillary tip generates pressure and friction between the capillary tip tip and the pad metal. Therefore, capillary tips are typically made from materials with high hardness and toughness.

Considering both manufacturing requirements and bonding methods, capillary tip materials must exhibit high density, high flexural strength, and the ability to be processed into a smooth surface. Common capillary tip materials include:

Fig.2 capillary tip shape
Fig.2 capillary tip shape

Tungsten karbür (WC)

Tungsten carbide exhibits strong resistance to breakage and was widely used in early capillary tip manufacturing. However, machining tungsten carbide is challenging, making it difficult to achieve a dense, pore-free surface. Due to its high thermal conductivity, tungsten carbide capillary tips must be heated during bonding to prevent heat dissipation from the pad.

Titanium Carbide (TiC)

Titanium carbide has a lower material density than tungsten carbide and is more flexible. Reports indicate that under the same ultrasonic transducer and capillary tip structure, titanium carbide capillary tips produce 20% greater tip vibration amplitude than tungsten carbide capillary tips.

Alumina (Al?O?, High-Purity Aluminum Oxide)

High-purity alumina offers excellent wear resistance, chemical stability, and low thermal conductivity, eliminating the need for capillary tip heating. When used in automated bonding equipment, alumina capillary tips can achieve up to 1 million bonding cycles.

Seramik

In recent years, ceramics have been widely adopted for capillary tip manufacturing due to their smooth, dense, pore-free structure, and stable chemical properties. Ceramic capillary tips provide superior machining precision for tip faces and wire holes compared to tungsten carbide.

 

Capillary Tip Selection

When selecting a capillary tip, the primary considerations include: material, hole diameter, and structural design.

 

Hole Diameter of Capillary Tip

The hole diameter is determined by the bonding wire diameter. An improper selection can lead to wire damage or even breakage.

For ball bonding capillary tips, the inner diameter is typically 1.3–1.4 times the gold wire diameter.

For wedge bonding capillary tips, the inner diameter is generally about 2 times the gold wire diameter.

 

Capillary Tip Structure

What is the Capillary Tip in the Industry of Chip Pachaging? 3

The capillary tip?features a precise and complex structure, with key parameters including length, profile, and tip geometry, all of which are closely related to the workpiece design and significantly influence bond strength. For example

Wedge bonding capillary tips

The front and rear radii of the capillary tip?should be sufficiently large to avoid stress concentration and maximize bond strength.

When bonding in cavity or recessed areas, the capillary tip?shape must be carefully selected to prevent bond interference (shadowing).

Ball bonding capillary tips

The tip diameter depends on pad pitch—a larger tip diameter increases the risk of short circuits between adjacent pads but also enhances second-bond strength.

 

The Problem of Aging in the Use of Capillary Tips

What is the Capillary Tip in the Industry of Chip Pachaging? 4

After multiple welding processes, the capillary tip will adhere to pollutant particles and be partially damaged, resulting in the aging of the capillary tip. This is mainly manifested in the deterioration of the solder joint morphology, the reduction of lead pulling force, and in severe cases, wire breakage or curling may occur. Figure 4 shows the weld morphology of a wedge-shaped titanium carbide alloy after repeated gold wire welding on the same substrate under the same welding parameters using a new cutting tip and after 3000, 6000, 9000, 12000, 14000, and 16000 welding cycles. It can be seen that the solder joint morphology of the new capillary tip is good. The solder joint morphology deteriorated after 9000 welding cycles, and after 16000 welding cycles, the solder joint morphology no longer meets the inspection requirements.

 

Reasons for the Aging of the Capillary Tip

Wear of tip?End Face

During the wire bonding process, hot press welding applies pressure from the end face of the cutting tip, causing a certain degree of mutual plastic deformation and close contact between the wire and the pad metal under pressure, and their molecules diffuse and firmly bond with each other.

Ultrasonic welding generates ultrasonic power from the transducer to vibrate the capillary tip, creating friction at ultrasonic frequencies between the lead and the pad metal, removing the oxide layer at the interface, and causing elastic deformation.

Both of these bonding principles will cause force on the end face of the cutting edge, resulting in wear and tear of the cutting edge after multiple welding, leading to severe deformation of the welding point.

The wear of the tip?end face is also affected by the operating method. When using manual bonding equipment for bonding operations, the operating technique has a significant impact on the end face of the cutting tip. For example, if the operator shakes their hand or applies excessive force during welding, it will accelerate the wear of the end face of the cutting tip. This phenomenon often occurs when novice operators operate.

 

Deposit?Generated on the End Face of the Tip

What is the Capillary Tip in the Industry of Chip Pachaging? 5

During actual wire bonding operations, it was found that some capillary tips?had a service life significantly shorter than expected. Microscopic examination revealed no obvious wear on the capillary tip?tip surface, but a thin film was observed adhering to the surface.

Figure 5 shows optical and SEM micrographs of a capillary tip?tip after 9,000 bonding cycles. The images clearly show a thin film attached to the tip surface, which affected the surface flatness and caused severe deformation of the bond points.

EDX spectrum analysis indicated that the film on the capillary tip?tip contained high levels of silicon and oxygen, as shown in Figure 6. Preliminary analysis suggests that the silicon likely originated from the chip, bonding wire, or substrate. During the bonding process, silicon gradually diffused (or migrated) to the capillary tip?and accumulated on the tip surface over time, ultimately affecting the bonding performance.

What is the Capillary Tip in the Industry of Chip Pachaging? 6

 

Cleaning of Surface Deposits

The silicon and oxide compounds accumulated on the capillary tip tip surface can be effectively removed using a NaOH solution, restoring the original tip morphology. Figure 7 presents a comparative view of a capillary tip tip before and after cleaning. As evident from Figure 7, the surface deposits are completely eliminated, allowing the capillary tip to resume normal operation.

What is the Capillary Tip in the Industry of Chip Pachaging? 7

??züm

The capillary tip is a critical tool in microassembly wire bonding. This paper has examined the materials, structural design, and selection methodology for commonly used wedge capillary tips, providing engineers with guidance to choose the most suitable capillary tip for optimal bonding quality and cost efficiency.

Additionally, the study addresses capillary tip aging phenomena, identifying two primary causes:

Wear on the capillary tip tip face (irreversible degradation).

Accumulation of silicon/oxide compounds on the tip surface (removable via cleaning).

By implementing periodic cleaning to remove surface contaminants, capillary tips can remain operational until reaching their wear-induced service limit. This approach maximizes tool lifespan while maintaining process reliability.

Bir cevap yaz?n

E-posta hesab?n?z yay?mlanmayacak. Gerekli alanlar * ile i?aretlenmi?lerdir

午夜国产三级一区二区三| 欧美区 日韩区 亚洲区| 欧美国产日韩a欧美在线| 哈啊慢点不要了视频| 天美传媒精品1区2区3区| 天天天天天干夜夜夜夜夜操| 中日韩VA无码中文字幕| 插到底啊啊啊视频| 大屁股真人日逼视频| 日韩无码av三级片| 黑大吊肏小騷逼噴水| 国产成人精品久久久成人| 亚洲国产成久久成人综合一区| 狗狗大鸡巴狂操美女| 男人摸女人下面视频| 国产一区二区三区免费观在线| 中文字幕一区二区 在线| 中文字幕在线观看第二页| 操鸡巴奶子在线观看| 国产精品你懂的在线资源| 日本老熟妇毛茸茸| 操你的骚逼粉嫩AV| 精品一区二区三区女性色| 亚洲国产区男人本色| 澳门一区二区免费下线观看| 日本亚洲欧洲一区二区| 日本免费一区二区在线| 非洲男生操男生屁眼视频| 亚洲卡通动漫第127页| 美女被大屌操大骚逼| AV无码超清破解版流出| 热精品韩国毛久久久久久| 精品少妇一区二区三区中文字幕| 欧美日韩亚洲人人夜夜澡| 久操视频中文字幕在线观看| 欧美十八一区二区三区| 精品一区二区三区乱码中文字幕| 国产精品白浆一区二区三区| 美女的粉嫩小逼视频特写| 女人被男人躁爽色欲国产| 日韩美女一区二区三区香蕉视频|