欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

Sintering of carbide?is a crucial step in the production of carbide. During the pressing process of carbide?powder, the bonding between powder particles mainly relies on the pressure exerted during pressing, and the powder particles cannot bond with each other due to the lack of yield tension. The pressed compact exists in a porous state. Liquid phase sintering method of powder metallurgy is required for sintering. There are mainly several sintering methods for carbide: hydrogen sintering, vacuum sintering, low-pressure sintering, and hot isostatic pressing. The equipment also varies according to the different sintering processes and methods.

The State of Carbide Compact Formation

After the carbide?compact is formed, it exists in a porous state. During the wet grinding process, the shape of WC is subjected to strong impacts, resulting in increased surface energy and enhanced reactivity. The longer the contact time of the compact with air, the greater the degree of oxidation, requiring more carbon for reduction. With the theoretical carbon content of carbide?remaining at 6.128%, the ratio of oxygen atoms to carbon atoms is 12/16. Therefore, for every additional unit of oxygen, it will consume 3/4 of the carbon content. This leads to the formation of the η phase more easily after alloy sintering.

The Existence of Oxygen in Carbide Mixtures

The oxygen content in the carbide?mixture can be considered to exist in three forms: occluded oxygen, cobalt surface oxygen, and oxygen in WO2 or WO3. Since the oxygen content measured by chemical oxygen determination includes the total of these three types of oxygen, it is difficult to determine their respective proportions in production. Therefore, this poses challenges to production. Additionally, oxygen enrichment in the environment is ubiquitous, so it is essential to manage each process reasonably in actual production.

Occluded Oxygen

Exists in the interstices of the compact and on the surface of the compact and mixture; generally removed by vacuum evacuation at the beginning of sintering, so it does not affect alloy sintering.

Cobalt Surface Oxygen

Due to the high susceptibility of cobalt to oxidation at room temperature, oxidation intensifies with increasing temperature. After wet grinding and subsequent drying, a layer of oxide film forms on the cobalt surface; the longer the material or compact is stored before sintering, the higher the degree of cobalt oxidation. This portion of the oxide requires carbon for reduction; before the temperature reaches 600°C during sintering, reduction mainly relies on free carbon, and the remaining unreduced oxides must be reduced by combined carbon. This portion of oxygen is critical to the carbon-oxygen balance during alloy sintering and is difficult to control.

WO2 or WO3 Oxygen

Also known as compound oxygen; before the carbonization of WC, WO3 gradually transforms into WO2 and then into tungsten powder (W), followed by carbonization. Some oxides may remain incompletely reduced or partially oxidized due to storage time, from W → W2C → WC, and may persist even after completion. Alternatively, inadequate protection during storage may lead to oxidation. These oxide residues are referred to as compound oxygen; the reduction temperature generally occurs before 1000°C, but severe oxidation may delay reduction until 1200°C. This oxide residue consumes carbon significantly, narrowing the margin for carbon levels and making it difficult to control sintering carbon content, thereby complicating the achievement of sufficient liquid phase formation.

 

The Form of Carbon in carbide

The carbon content in carbide?mainly exists in three ways: WC stoichiometry, carbon increment from binder decomposition, and carbon infiltration from furnace gases.

Generally, WC is adjusted according to the theoretical carbon content of carbide; reasonable carbon adjustment is made based on small samples before wet grinding; in the wax process, the carbon content is adjusted by subtracting the amount of carbon infiltrated from furnace gases and adding the amount of carbon consumed by oxides. In the rubber process, one-third of the rubber weight should be subtracted.

Carbon Increment from Binder Decomposition

During debinding and sintering, whether using wax, PEG, or rubber, there is more or less decomposition; thus, carbide?can gain carbon, although the amount of carbon increase varies with different binders. Since wax mainly relies on evaporation, it is generally considered not to increase carbon content. On the other hand, rubber and PEG rely on decomposition, with rubber decomposition occurring at higher temperatures, resulting in more carbon increase.

carbide metal

Carbon Infiltration from Furnace Gases

Since most heating elements, insulation layers, sintering plates or boats in carbide?sintering furnaces are made of graphite products, their effects become evident at 600°C; when sintering temperature rises above 1200°C, a large amount of carbon and CO released from graphite exacerbate carbon infiltration into carbide.

Impact of Cobalt on carbide?Properties

Cobalt has a hexagonal close-packed crystal structure, making it highly reactive and prone to oxidation. In WC-Co alloys, cobalt acts as the binder metal. When the cobalt phase exhibits the ε-Co crystal structure, with fewer slip planes (theoretically no more than 3), the alloy’s toughness is low. However, when the cobalt phase exhibits the α-Co crystal structure, the maximum number of theoretical slip planes can increase to 12, resulting in stronger fracture resistance. With increasing sintering temperature, the cobalt crystal structure shifts from hexagonal close-packed to face-centered cubic; the reverse occurs during cooling. Since tungsten dissolves more in cobalt, playing a “nailing” role, the transformation of crystal structure during cooling varies with the amount of tungsten dissolved.

Up to 1% of cobalt can dissolve in WC at room temperature; when the sintering temperature reaches between 400°C and 800°C, vigorous diffusion and rearrangement of cobalt occur. During this period, a lower amount of free carbon is more conducive to increased slip planes; this is advantageous in wax processes. However, rubber processes require completion of decomposition around 600°C, affecting the effective occurrence of cobalt phase slip planes.

At 1000°C during sintering, the oxide has almost completed the reduction process, so this stage is referred to as oxygen-free sintering. Carbon content in carbide?is generally tested at this stage; however, the so-called oxygen-free carbon contains only a minimal amount of oxygen. Nonetheless, oxide on the cobalt surface has been completely reduced by this point, and the edges of the cobalt phase have produced fewer liquid phases. At this stage, the compact has acquired some hardness, known as the pre-sintering stage. Products at this stage can undergo plastic processing if necessary.

The Sintering Mechanism of?Carbide 2

Liquid Phase in Carbide

Theoretically, the liquid phase in WC-Co alloys appears at 1340°C. The temperature at which the liquid phase sufficiently appears varies with carbon content. As sintering temperature rises, the amount of liquid phase increases; fine WC particles gradually form a liquid phase. Intense shrinkage occurs in the product, reducing the distance between WC particles. Fine WC particles are gradually melted by larger particles, resulting in coarser WC particles. This phenomenon is known as grain growth. Grain growth during sintering is inevitable, particularly in ultrafine or submicron WC, where grain growth is more pronounced. To effectively inhibit excessive grain growth, inhibitors such as VC, TaC, and Cr3C2 can be added.

After sintering, undissolved WC and W2C rapidly precipitate, followed by ternary eutectic formation, laying the foundation for the alloy. The longer the cooling time above 1200°C, the more complete the precipitation, but the greater the opportunity for grain growth.

The Sintering Mechanism of?Carbide 3

??züm

The pursuit of ternary eutectic structures is the most critical aspect of sintering in WC-Co carbide. Ternary eutectic structures form the fundamental framework of carbide. In the W-C-Co ternary system, effective handling of WC grain growth, allowing more tungsten to dissolve in cobalt without decarburization, thereby improving the durability and toughness of carbide, is always the goal of alloy manufacturers. A German technical expert once said: “The essence of sintering lies in ‘high temperature and low carbon’.”

Bir cevap yaz?n

E-posta hesab?n?z yay?mlanmayacak. Gerekli alanlar * ile i?aretlenmi?lerdir

亚洲精品在线观看一二三区-在线观看国产中文字幕视频| 91大神国内精品免费网站-亚洲免费电影一区二区| 99在线免费观看视频-丰满人妻一区二区三区视频53| 三上悠亚免费观看在线-青青草原在线视频观看精品| 国产精品一区二区在线免费-久久精品国产亚洲av热明星| 青青操视频在线观看国产-欧美成人乱码在线观看| 国语自产偷拍精品视频偷拍-国产伊人这里只有精品视频| 国产成人高清精品免费5388-好妞色妞在线视频播放| 亚洲av乱码一区二区-九九免费在线观看视频| 国产免费一区二区三区不-日本少妇免费一区二区三区| 成人av一区二区蜜桃-亚洲色图激情人妻欧美| 亚洲国产日韩精品四区-dy888午夜福利精品国产97| 亚洲欧洲一区二区福利-亚洲欧美日韩高清中文| 国产精品久久久精品一区-99久久免费精品国产男女性高好| 91亚洲美女视频在线-熟妇人妻精品一区二区三区蜜臀| 日韩中文字幕v亚洲中文字幕-日韩亚洲av免费在线观看| 欧洲精品一区二区三区中文字幕-91久久国产综合久久蜜月精品| 久久影视av一区二区-人妻激情乱偷一区二区三区| 欧美精品国产白浆久久正在-国产精彩视频一区二区三区| 国产精品二区高清在线-91精品91久久久久久| 成人av一区二区蜜桃-亚洲色图激情人妻欧美| 熟女熟妇伦51788-国产av在线播放一区二区三区| 日本女优一卡二卡在线观看-欧美大胆a级视频秒播| 国产欧美一区二区三区嗯嗯-欧美一区二区日本国产激情| 久久蜜桃精品一区二区-麻豆视频啊啊啊好舒服| 亚洲av专区在线观看国产-丰满人妻av一区二区三区| 日本中文字幕永久在线人妻蜜臀-欧美一区二区的网站在线观看| 18禁真人在线无遮挡羞免费-中文字幕精品一区二区三区四区| 久久夜色精品亚洲噜国产av-大香蕉伊人猫咪在线观看| 中文字幕精品一区二区日本99-青青国产成人久久91网| 久久99热这里都是精品啊-国产成人亚洲精品无码aV| 国产精品v欧美精品v日韩精品-国产欧美日韩精品区一区二污污污| 91精品国产无线乱码在线-999精品视频免费看| 可以免费看污污视频的网站-日韩欧美不卡视频在线观看| 18禁真人在线无遮挡羞免费-中文字幕精品一区二区三区四区| 国产精品久久99精品毛片-国产四季高清一区二区三区| 性色国产成人久久久精品二区三区-偷窥中国美女洗澡视频| 免费午夜福利在线观看-黄色日本黄色日本韩国黄色| 日韩二级视频在线观看-美女扒开奶罩露出奶子的视频网站| 国产精品v欧美精品v日韩精品-国产欧美日韩精品区一区二污污污| 国产剧情av中文字幕-五月婷婷在线手机视频|