欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

The performance study of spherical cast tungsten carbide powder prepared by the 3 methods 1

Spherical Cast Tungsten Carbide Powder is a novel type of highly wear-resistant ceramic particle material. Compared to traditional tungsten carbide, spherical cast tungsten carbide possesses two significant advantages. Firstly, it has a regular spherical appearance with good powder flowability and wetting properties. When used as an additive particle, it exhibits excellent compatibility with the surrounding structure, reducing stress concentration. Secondly, the internal structure of the tungsten carbide particles is dense, exhibiting good toughness, fine grain size, high hardness, and excellent wear resistance as a coating. It is less prone to fracture under load.

Due to its outstanding performance, spherical cast tungsten carbide powder is gradually replacing traditional tungsten carbide powder in surface protection applications for mining machinery, petroleum machinery, construction industry, and foundries. It significantly enhances the wear resistance, corrosion resistance, and oxidation resistance of components, thereby extending their service life.

The chemical composition, microscopic morphology, microstructure, microhardness, and other powder properties of spherical cast tungsten carbide powder prepared by different methods will be investigated below.

The performance study of spherical cast tungsten carbide powder prepared by the 3 methods 2

1.Chemical composition of sample carbide powder

The performance study of spherical cast tungsten carbide powder prepared by the 3 methods 3

The table above shows the chemical composition of spherical cast tungsten carbide powder samples prepared by different methods. It can be observed that the main components of spherical cast tungsten carbide powder are tungsten (W) and carbon (C), with trace amounts of iron (Fe), vanadium (V), chromium (Cr), and niobium (Nb). The ideal composition of spherical cast tungsten carbide should consist of eutectic WC and W2C phases, with a eutectic temperature of 2525 ℃ and a carbon content of 3.840% (mass fraction) at the eutectic point. From the data in the table, it can be seen that the spherical cast tungsten carbide powder prepared by the plasma rotating electrode atomization method has the smallest deviation from the theoretical carbon content and the lowest free carbon content. On the other hand, the powder obtained from the induction melting and atomization method shows the largest deviation from the theoretical carbon content, with a difference of 0.170% (mass fraction). This is likely due to the use of graphite tube heating in the induction melting process, which can increase the carbon content. Therefore, compared to other methods, the plasma rotating electrode atomization method can more accurately control the carbon content of spherical cast tungsten carbide powder, preventing over-eutectic and sub-eutectic reactions caused by carburization and decarburization, and achieving a near-perfect eutectic microstructure. This is crucial for improving the microstructure and properties of spherical cast tungsten carbide.

2.Microscopic morphology

fig1.The microstructure of spherical cast tungsten carbide powder samples
fig1.The microstructure of spherical cast tungsten carbide powder samples

The figure above shows the microstructure of spherical cast tungsten carbide powder prepared by different methods. It can be observed that the spherical cast tungsten carbide powder obtained from all three methods exhibits a regular and smooth near-spherical shape.

The cross-sectional images of spherical cast tungsten carbide powder
fig.2 The cross-sectional images of spherical cast tungsten carbide powder

The figure above shows cross-sectional photographs of spherical cast tungsten carbide powder prepared by different methods. From (a) and (b), it can be observed that the particles of spherical tungsten carbide powder prepared by plasma rotating electrode atomization method have a dense internal structure with almost no defects. However, from (c) and (d), it can be seen that spherical tungsten carbide powder prepared by plasma melting and atomization as well as induction melting and atomization methods have some noticeable pores or hollow particles within their internal structure. The main reason for this is that the crushed tungsten carbide powder used as raw material in the above-mentioned methods may contain residual pores from the casting process. During the short-duration plasma or induction heating process, it becomes challenging for the internal part of the crushed tungsten carbide powder to fully melt, resulting in the presence of some pores within the particles.

3.Microstructure

the microscopic structure of spherical cast tungsten carbide powder samples
fig3. the microscopic structure of spherical cast tungsten carbide powder samples

The figure above displays microscopic images of the microstructure of spherical cast tungsten carbide powder particles prepared by different methods after corrosion. It can be observed that the internal structure of the particles in all three methods primarily consists of a typical fine needle-like eutectic structure of WC and W2C phases. Compared to plasma melting and atomization and induction melting and atomization methods, the eutectic microstructure of spherical cast tungsten carbide powder obtained by plasma rotating electrode atomization method appears to be finer and denser. This is because, in contrast to plasma melting and atomization and induction melting and atomization methods, plasma rotating electrode atomization method fully melts the tungsten carbide raw material rod and rapidly solidifies it under the centrifugal force. The higher undercooling during the crystallization of the molten tungsten carbide results in more rapid nucleation and a greater number of crystal nuclei formation, leading to a finer eutectic microstructure.

4.Microhardness

The table below shows the average microhardness of spherical cast tungsten carbide powder prepared by different methods. It can be observed that the microhardness of the spherical cast tungsten carbide powder obtained from all three methods is above 2800 HV0.1. Among them, the powder produced by the plasma rotating electrode atomization method exhibits the highest microhardness, reaching 3045 HV0.1. This is mainly due to the finer and denser eutectic microstructure within the spherical cast tungsten carbide powder obtained by the plasma rotating electrode atomization method.

The performance study of spherical cast tungsten carbide powder prepared by the 3 methods 4

5.Other physical properties

The table below presents the flowability and tap density values of spherical cast tungsten carbide powder prepared by different methods. It can be observed that the powder obtained from the plasma rotating electrode atomization method has the poorest flowability and the lowest tap density. On the other hand, the powder obtained from the induction melting and atomization method exhibits the best flowability and the highest tap density.

The performance study of spherical cast tungsten carbide powder prepared by the 3 methods 5

??züm

(1) The spherical cast tungsten carbide powder prepared by the plasma rotating electrode atomization method exhibits the smallest deviation from the theoretical carbon content and eutectic carbon content, with the lowest free carbon content and relatively low impurity content.

(2) The internal structure of the spherical tungsten carbide powder particles obtained by the plasma rotating electrode atomization method is dense, with almost no defects. The eutectic microstructure is finer and denser. On the other hand, the particles obtained by plasma melting and atomization as well as induction melting and atomization methods show some noticeable pores or hollow particles within their internal structure.

(3) All three methods result in spherical cast tungsten carbide powder primarily consisting of WC and W2C phases.

(4) The microhardness of the spherical cast tungsten carbide powder obtained by all three methods is above 2800 HV0.1. Among them, the powder produced by the plasma rotating electrode atomization method exhibits the highest microhardness, reaching 3045 HV0.1. The powder obtained by the induction melting and atomization method shows good flowability and the highest tap density.

The performance study of spherical cast tungsten carbide powder prepared by the 3 methods 6

The performance study of spherical cast tungsten carbide powder prepared by the 3 methods 7

 

 

 

 

Temmuz 16, 2023

Hello. I work in the aviation sector and we are metal strip drawing SS aviation grade metal and cannot seem to find a carbide that gives us the toughness and long wear properties that normal carbide would provide with regular tungsten carbide used in metal drawing of softer materials?Would you have a supplier list of companies that provide this new type of carbide? Regards

A?ustos 3, 2023

Hello Dale,
Thank you for leaving a comment!
Could you please send us an inquiry to [email protected]?
Sayg?lar?mla,

Bir cevap yaz?n

E-posta hesab?n?z yay?mlanmayacak. Gerekli alanlar * ile i?aretlenmi?lerdir

亚洲国产日韩欧美高清片| 国产一区二区三区午夜精品久久| 被公侵犯人妻少妇一区二区三区| 亚洲综合一区国产精品| 亚洲av午夜福利精品一区| 大屌把女生逼逼操肿国产| 国内揄拍国内精品| 91久国产在线观看| 中文字幕一区二区三区中文字幕| 操逼啊 啊 啊黄色视频| 快日我啊好爽日我逼| 美国女人抠插bbb| 日韩免费一级a毛片在线播放一级| 日本高清一区二区三区水蜜桃| 操女人大逼视频下载| 国产精品国产三级国| 嗯嗯好硬好大啊老公| 女人日比比视频免费| 国内揄拍国内精品| 一区二区三区四区五六区| 骚逼少妇被巨根爆插| 国产精品无码毛片久久久| 中国美女操逼的视频| 精品一区二区三区女性色| 男插女下面高潮视频| 少妇被黑人到高潮喷出白浆| aaa啊啊啊黄片| 99久久九九爱精品国产| 在线看免费无码a片视频| 亚洲精品一区二区精华液| 男生用鸡巴操女生的视频| 男生操女生无马赛克免费| 欧美黑屌操B内射冒白浆| 最是人间烟火色在线播放| 国产精品一区二区在线观看91| 日本免费一区二区在线| 久久久久亚洲精品无码系列| 美女主播被操流水| 女生小穴色色视频| 99久久久国产精品美女| 亚洲综合区欧美一区二区|