欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

Bir par?an?n yap?sal ?ekli yaln?zca tasar?m performans gereksinimlerini kar??lamakla kalmayacak, ayn? zamanda i?leme süreci gereksinimlerini de kar??lamal?d?r. Bu nedenle par?alar üzerindeki ortak proses yap?s?n?n anla??lmas? gerekmektedir.

Process structure of casting parts (including drawing of transition line)

The process structure of casting parts includes mold inclination, casting fillet, casting wall thickness, etc.

1. Formwork lifting slope

   When casting parts, in order to facilitate mold taking, a certain slope is often designed along the mold starting direction on the casting wall, that is, the mold starting slope. For the structure with small inclination, it may not be drawn on the graph, but the value of mold lifting inclination must be explained in words in the technical requirements. As shown in Figure 1.

What is the optimal structure of mechanical part drawing 1

?ekil 1

2. Cast fillet

When casting parts, in order to prevent sand falling from the casting sand mold and avoid cracks or shrinkage cavities during casting cooling (as shown in Fig. 2), the intersection of casting surfaces shall be made into fillet transition, as shown in Fig. 3. Generally, the cast fillet shall be drawn in the drawing. When the radius of each fillet is the same or close, the radius value can be uniformly noted in the technical requirements, such as cast fillet R3 ~ R5, etc.

What is the optimal structure of mechanical part drawing 2

Figure.2

What is the optimal structure of mechanical part drawing 3

Figure.3

Because there are casting fillets at the intersection of casting surfaces, the intersection line of two surfaces becomes less obvious. However, on the part drawing, the theoretical intersection line of the surface must still be drawn, but it is required to leave a blank at both ends or one end of the intersection line, which is usually called the transition line. The drawing method of transition line is basically the same as that of intersection line without fillet. The differences between them are shown in Figure 4.

What is the optimal structure of mechanical part drawing 4

Figure.4

3. Casting wall thickness

  In order to avoid cracks or shrinkage cavities caused by internal stress during casting cooling, the wall thickness of the casting shall be as uniform as possible, and the transition between different wall thicknesses shall also be uniform, as shown in Figure 5.

What is the optimal structure of mechanical part drawing 5

Figure.5

Cutting process structure of metal parts

  The cutting process structure of metal parts includes chamfering and rounding, tool return groove or grinding wheel over travel groove, reasonable structure of drilling, boss and pit, etc.

1. Chamfering and rounding

  In order to facilitate assembly, chamfer is often machined at the shaft end or orifice, as shown in Fig. 6 (a). In order to avoid cracks on the stepped shaft or hole due to stress concentration, fillets are often machined at the turning point of the shoulder, as shown in Fig. 6 (b). The type and size of chamfering and rounding of parts shall be specified in the national standard.

What is the optimal structure of mechanical part drawing 6

Figure.6

2. Undercut or grinding wheel over travel groove

  In order to easily withdraw the tool during cutting and ensure the machining quality, the tool withdrawal groove or grinding wheel over travel groove is often machined at the shoulder of the machining surface, as shown in Fig. 6 (c). The structure and size of the over travel groove of the grinding wheel are specified in the national standard.

3. Bosses or pits

  In order to reduce the amount of machining and ensure good indirect contact of parts during assembly, bosses or pits are often made on the surface of parts.

4. Reasonable drilling structure

  In order to avoid axis deflection and bit breaking during drilling, the axis of the hole shall be perpendicular to the end face of the hole. Therefore, when there is a drilling structure on the inclined surface, a plane, boss or pit perpendicular to the drilling direction shall be designed, as shown in Figure 8.

Cutting process structure of metal parts

  The cutting process structure of metal parts includes chamfering and rounding, tool return groove or grinding wheel over travel groove, reasonable structure of drilling, boss and pit, etc.

1. Chamfering and rounding

  In order to facilitate assembly, chamfer is often machined at the shaft end or orifice, as shown in Fig. 6 (a). In order to avoid cracks on the stepped shaft or hole due to stress concentration, fillets are often machined at the turning point of the shoulder, as shown in Fig. 6 (b). The type and size of chamfering and rounding of parts shall be specified in the national standard.

What is the optimal structure of mechanical part drawing 7

Figure.6

2. Undercut or grinding wheel over travel groove

  In order to easily withdraw the tool during cutting and ensure the machining quality, the tool withdrawal groove or grinding wheel over travel groove is often machined at the shoulder of the machining surface, as shown in Fig. 6 (c). The structure and size of the over travel groove of the grinding wheel are specified in the national standard.

3. Bosses or pits

  In order to reduce the amount of machining and ensure good indirect contact of parts during assembly, bosses or pits are often made on the surface of parts, as shown in Figure 7What is the optimal structure of mechanical part drawing 8

What is the optimal structure of mechanical part drawing 9

Figure.7

4. Reasonable drilling structure

  In order to avoid axis deflection and bit breaking during drilling, the axis of the hole shall be perpendicular to the end face of the hole. Therefore, when there is a drilling structure on the inclined surface, a plane, boss or pit perpendicular to the drilling direction shall be designed, as shown in Figure 8.

What is the optimal structure of mechanical part drawing 10

Bir cevap yaz?n

E-posta hesab?n?z yay?mlanmayacak. Gerekli alanlar * ile i?aretlenmi?lerdir

国产尤物蜜臀AV| 在线观看免费视频a v| 爆操大奶子美女视频| 看一下日本人插逼逼洞视频| 国产精品粉嫩懂色av| 日本av在线一区二区| 日韩欧美一二三区| 好想大鸡巴插进阴道视频| 男生舔女生下面黄色视频| 插到底啊啊啊视频| 日本一区二区不卡在线国产| 娇嫩的被两根粗大的np| 午夜精品在线视频| 强伦人妻一区二区三区视频18| 国产高清免费一级a久久| 欧美巨屌虐无毛骚逼| 交换夫妇4中文字幕| aaa啊啊啊黄片| 日本中文字幕无人区一区二区| 少妇精品久久久一区二区免费| 两人爽爽爽无码免费视频| 国产亚洲精品高清视频免费| 新视觉亚洲三区二区一区理伦| 国奴精品毛片av一区二区三区| 日本免费无码一区二区到五区| 中文字幕在线观一区二区| 女人扒开腿让我舔十八禁| 九九热在线精品免费看| 无码社区在线观看| 亚洲v国产v天堂a无码| 999精品免费视频| 亚洲一区二区三成人精品| 久久69精品久久久久免| 精品一区二区久久久久无码| 老头鸡巴操老太骚逼| 美女呻吟翘臀后进爆白浆| 欧美精品日韩精品中文字幕| 黑丝美女被操哭边操边尿| 美女骚逼黄色18禁| av在线国产哟哟| 日韩人妻无码中字一区二区|