欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

The structural shape of a part shall not only meet the design performance requirements, but also meet the processing process requirements. Therefore, it is necessary to understand the common process structure on parts.

Process structure of casting parts (including drawing of transition line)

The process structure of casting parts includes mold inclination, casting fillet, casting wall thickness, etc.

1. Formwork lifting slope

   When casting parts, in order to facilitate mold taking, a certain slope is often designed along the mold starting direction on the casting wall, that is, the mold starting slope. For the structure with small inclination, it may not be drawn on the graph, but the value of mold lifting inclination must be explained in words in the technical requirements. As shown in Figure 1.

What is the optimal structure of mechanical part drawing 1

фигура 1

2. Cast fillet

When casting parts, in order to prevent sand falling from the casting sand mold and avoid cracks or shrinkage cavities during casting cooling (as shown in Fig. 2), the intersection of casting surfaces shall be made into fillet transition, as shown in Fig. 3. Generally, the cast fillet shall be drawn in the drawing. When the radius of each fillet is the same or close, the radius value can be uniformly noted in the technical requirements, such as cast fillet R3 ~ R5, etc.

What is the optimal structure of mechanical part drawing 2

Figure.2

What is the optimal structure of mechanical part drawing 3

Figure.3

Because there are casting fillets at the intersection of casting surfaces, the intersection line of two surfaces becomes less obvious. However, on the part drawing, the theoretical intersection line of the surface must still be drawn, but it is required to leave a blank at both ends or one end of the intersection line, which is usually called the transition line. The drawing method of transition line is basically the same as that of intersection line without fillet. The differences between them are shown in Figure 4.

What is the optimal structure of mechanical part drawing 4

Figure.4

3. Casting wall thickness

  In order to avoid cracks or shrinkage cavities caused by internal stress during casting cooling, the wall thickness of the casting shall be as uniform as possible, and the transition between different wall thicknesses shall also be uniform, as shown in Figure 5.

What is the optimal structure of mechanical part drawing 5

Figure.5

Cutting process structure of metal parts

  The cutting process structure of metal parts includes chamfering and rounding, tool return groove or grinding wheel over travel groove, reasonable structure of drilling, boss and pit, etc.

1. Chamfering and rounding

  In order to facilitate assembly, chamfer is often machined at the shaft end or orifice, as shown in Fig. 6 (a). In order to avoid cracks on the stepped shaft or hole due to stress concentration, fillets are often machined at the turning point of the shoulder, as shown in Fig. 6 (b). The type and size of chamfering and rounding of parts shall be specified in the national standard.

What is the optimal structure of mechanical part drawing 6

Figure.6

2. Undercut or grinding wheel over travel groove

  In order to easily withdraw the tool during cutting and ensure the machining quality, the tool withdrawal groove or grinding wheel over travel groove is often machined at the shoulder of the machining surface, as shown in Fig. 6 (c). The structure and size of the over travel groove of the grinding wheel are specified in the national standard.

3. Bosses or pits

  In order to reduce the amount of machining and ensure good indirect contact of parts during assembly, bosses or pits are often made on the surface of parts.

4. Reasonable drilling structure

  In order to avoid axis deflection and bit breaking during drilling, the axis of the hole shall be perpendicular to the end face of the hole. Therefore, when there is a drilling structure on the inclined surface, a plane, boss or pit perpendicular to the drilling direction shall be designed, as shown in Figure 8.

Cutting process structure of metal parts

  The cutting process structure of metal parts includes chamfering and rounding, tool return groove or grinding wheel over travel groove, reasonable structure of drilling, boss and pit, etc.

1. Chamfering and rounding

  In order to facilitate assembly, chamfer is often machined at the shaft end or orifice, as shown in Fig. 6 (a). In order to avoid cracks on the stepped shaft or hole due to stress concentration, fillets are often machined at the turning point of the shoulder, as shown in Fig. 6 (b). The type and size of chamfering and rounding of parts shall be specified in the national standard.

What is the optimal structure of mechanical part drawing 7

Figure.6

2. Undercut or grinding wheel over travel groove

  In order to easily withdraw the tool during cutting and ensure the machining quality, the tool withdrawal groove or grinding wheel over travel groove is often machined at the shoulder of the machining surface, as shown in Fig. 6 (c). The structure and size of the over travel groove of the grinding wheel are specified in the national standard.

3. Bosses or pits

  In order to reduce the amount of machining and ensure good indirect contact of parts during assembly, bosses or pits are often made on the surface of parts, as shown in Figure 7What is the optimal structure of mechanical part drawing 8

What is the optimal structure of mechanical part drawing 9

Figure.7

4. Reasonable drilling structure

  In order to avoid axis deflection and bit breaking during drilling, the axis of the hole shall be perpendicular to the end face of the hole. Therefore, when there is a drilling structure on the inclined surface, a plane, boss or pit perpendicular to the drilling direction shall be designed, as shown in Figure 8.

What is the optimal structure of mechanical part drawing 10

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

男人大鸡巴操小鲜肉视频| 日本熟人妻中文字幕在线| 亚洲Av无码专区一区二区三区| 美女爽的嗷嗷叫免费| 夜色成人免费观看| 日本高清一区二区三区在线观看| 大粗鳮巴r教师人妻91| 精品免费福利片国产| 久久精品国产自清天天线| 日韩在线中文字幕在线视频| 无码人妻精品一区二区三区蜜桃| 青娱乐欧美性爱视频| 99久久九九爱精品国产| 国产成人精品久久久成人| 在线无码一区二区三区不卡| 精品少妇一区二区三区中文字幕| 中文字幕乱码人妻一区二区三区| 欧美性一区二区三区五区| 大鸡巴日小美女明星的BB| 日本美女阴户射尿| 日韩一区二区三区夜色视频| 国产免费无码一区二区视频无码| 狂野国产性爱av| 精品麻豆国产免费一区二区三区| 在线观看国产日韩欧美一区二区| 极品美女销魂一区二区三区| 欧美性一区二区三区五区| 欧美性做爰片免费视频看| 免费看看小骚逼逼| 中文字幕精品字幕一区二区三区| 中文字幕不卡一区二区免| 91污在线观看一区二区三区| 亚洲午夜国产片在线观看| 操女人真人大骚逼| 91精品国产综合久久久蜜| 91偷自产一区二区三区蜜臀| 精华欧美一区二区久久久| 好想大鸡巴插进阴道视频| 欧美 亚洲 日本 国产| 从后面进入嗯啊视频| 操国产骚逼逼逼逼逼逼逼|