欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

The properties of cemented carbides depend not only on the grain size of WC but also significantly on the phase composition, microstructure, and their distribution in the alloy. In actual production, due to factors such as raw materials and sintering processes, the alloy typically exhibits a complex microstructure. Therefore, this paper primarily discusses the phase composition and phase transformation process in WC-based carbides from a thermodynamic perspective, based on the W-Co-C phase diagram.

How Phase Transformations Shape the Properties of WC-based Carbides 2

Phase Composition of WC-Co Cemented Carbides

Figure 1 shows the vertical section of the W-Co-C ternary phase diagram along the Co-WC line. Taking a WC-60%Co alloy as an example:

Before liquid phase formation, the solubility of WC in Co increases with temperature.

At the eutectic temperature (~1340°C), a liquid phase with eutectic composition begins to form in the sintered body.

During sintering at 1400°C and subsequent holding, the sintered body consists of a liquid phase and residual WC solid phase.

Upon cooling, WC first precipitates from the liquid phase. Below the eutectic temperature, the WC-based carbides forms a two-phase structure of WC + γ.

How Phase Transformations Shape the Properties of WC-based Carbides 3

Figure 1: Vertical Section of the W-Co-C Ternary Phase Diagram Along the Co-WC Line

In actual production, the composition of sintered bodies often deviates from the vertical section of the Co-WC line. Consequently, the alloy is not simply composed of γ+WC two phases. As shown in Figure 2 , the carbon-rich side of the γ+WC two-phase region borders the γ+WC+C three-phase region and the γ+C two-phase region, while the carbon-deficient side borders the γ+WC+η three-phase region. Only when the carbon content of the sintered body varies strictly within the γ+WC two-phase region can the WC-based carbide avoid the formation of a third phase. Otherwise, it may lead to carbon inclusions or the formation of carbon-deficient η phase.

Since the strength of the alloy is closely related to the structure and composition of the γ phase, while the presence of η phase may degrade toughness, extensive research has been conducted on the γ and η phases, as well as phase transformation processes, in an effort to control the phase composition of WC-Co alloys and improve their overall performance.

WC-based Carbide

γ Phase Composition and Phase Transformation in WC-based carbides

As shown in Figure 2, the composition of the γ phase depends on the carbon content of the alloy, while its tungsten content increases with decreasing carbon content. When the alloy’s carbon content lies at the boundary between the γ+WC two-phase region and the γ+WC+η three-phase region, the γ phase exhibits the highest tungsten concentration. Conversely, when free carbon is present and the carbon content aligns precisely with the Co-WC cross-section (i.e., the theoretical carbon content of 6–12 wt.%), the γ phase contains the lowest tungsten concentration.

The tungsten concentration in the γ phase is also influenced by the cooling rate: slower cooling results in lower tungsten content, while rapid cooling leads to higher tungsten retention. This occurs because faster cooling suppresses the diffusion-driven precipitation of tungsten from the γ phase, locking in a non-equilibrium concentration. Additionally, higher sintering temperatures increase the tungsten solubility in the liquid phase, thereby raising the tungsten content in the γ phase at a given cooling rate. However, under sufficiently slow cooling, thermodynamic equilibrium dictates that the γ phase composition becomes independent of the sintering temperature.

In WC-Co cemented carbides, the γ phase is a cobalt-based solid solution of W and C. It exists either as discrete γ grains separated by grain boundaries or as isolated γ domains unevenly distributed within the matrix. Both γ grains and domains typically exhibit equiaxed or near-equiaxed morphologies. Notably, the volume fraction of γ domains increases with higher cobalt content in the WC-based carbide.

 

Factors Influencing γ Phase Transformation in WC-based carbides

Effect of Internal Stresses

The mismatch in thermal expansion coefficients between WC phase (384×10??/°C) and γ phase (1.25×10??/°C) generates microstructural stresses during cooling (tensile in γ phase, compressive in WC phase).

Increased cooling rate or quenching suppresses W diffusion precipitation in γ phase, elevating W concentration in room-temperature γ phase while reducing hcp γ phase content.

Cryogenic treatment (below Ms point) induces W supersaturation in γ phase, enlarging the free energy difference between fcc and hcp γ phases. Concurrently, enhanced internal stresses promote Ms transformation, markedly increasing hcp γ phase fraction—particularly pronounced in low-Co alloys.

Impact of Cobalt Content

In low-Co alloys (e.g., WC-8Co), thin γ phase layers (<0.3 μm) facilitate W diffusion to WC grains, lowering W concentration in γ phase. This raises the Ms point, favoring hcp γ phase formation during cooling and yielding higher room-temperature hcp γ phase content.

 

η Phase in WC-based carbides

Formation Mechanism and Morphology of η Phase

Due to the narrow carbon content range in the WC-γ two-phase region (Fig. 2), carbon deficiency in raw materials or sintering decarburization often leads to η phase formation (e.g., M?C-type Co?W?C, Co?W?C, and M??C-type Co?W?C). Among these, Co?W?C is most common.

Formation process

Heterogeneous nucleation: γ phase nucleates along WC-γ interfaces using WC grain surfaces as nucleation sites, facilitated by slow W diffusion from WC to γ phase and high W concentration at phase boundaries. γ phase tends to fill surface defects (high-energy sites) of WC grains.

Carbon loss and η phase precipitation

Rapid C diffusion in γ phase causes C depletion when WC dissolves, resulting in W/C ratio imbalance (room temperature [W]/[C]≈284).

During sintering (1350-1500°C), excessive C loss leads to W-rich γ phase, precipitating carbon-deficient η phase (intermediate phases like Co?W and Co?W?C form first, transforming to η phase at high temperatures).

Phase equilibrium and morphology

η phase growth consumes W and C, driving WC dissolution until equilibrium is reached.

η phase morphology is influenced by γ liquid phase flow (e.g., cross-shaped single crystals).

Key point: Carbon imbalance is the primary cause of η phase formation, with γ phase nucleation dependent on WC interfaces and high-temperature C loss driving η phase precipitation.

 

Factors Influencing η Phase Formation

Carbon content is critically important for η phase formation. In the WC+γ+η three-phase region:

Higher carbon content maintains W and C concentrations in γ phase closer to equilibrium, hindering η phase nucleation.

Mild carbon deficiency: η phase growth relies on dissolution of WC microcrystals in γ interlayers, resulting in η phases enveloping undissolved WC grains with regular geometries.

Severe carbon deficiency: Significant deviation from equilibrium W/C ratio in γ phase promotes extensive WC dissolution, leading to dispersed particulate η phase distribution.

 

Cobalt content effects

High-Co alloys contain more γ phase with better fluidity, facilitating W and C diffusion. While η phase nucleation is difficult, growth is easier, forming coarse, clustered grains.

 

WC grain size effects

Coarser WC grains promote η phase nucleation but slow growth, resulting in dispersed particulate phases.

 

Sintering process effects

Faster cooling reduces dwell time at η phase critical temperature, suppressing η phase formation.

Higher sintering temperatures increase γ liquid phase quantity, favoring coarse η phase grains, but excessive temperatures may keep γ liquid away from η phase boundaries, inhibiting η phase growth.

How Phase Transformations Shape the Properties of WC-based Carbides 4

 

Conclusions

A comprehensive understanding of the phase transformation processes during the sintering of WC-based carbides is crucial for optimizing production processes, controlling phase composition and microstructure in the alloys, thereby creating favorable conditions for manufacturing high-performance WC cemented carbides.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

加勒比五月综合久久伊人| 欧美另类在线观看| 国产精品日韩精品欧美精品| 欧美一区二区三区四公司| 区国产精品搜索视频| 国产午夜久久精品一区四虎| 大鸡巴插美女小逼逼| 女人张开腿让男人捅个爽| 亚洲精品国产综合一线久久| 男生舔女生下面黄色视频| 啦啦啦视频在线手机播放| 亚洲色欲久久久久综合网| 大鸡吧小骚逼视频| 日韩视频在线网页| 爆乳1把你榨干在线观看| 自拍偷拍视频颜射| 联系附近成熟妇女| 久久国产高清波多野结衣| 校花内射国产麻豆欧美一区| 插女人下面高潮视频| 美女人的逼免费观看| 女女同性女同1区二区三| 一区二区三区亚洲av| 日韩欧美人妻综合| 日本亚欧乱色视频69室| 爱男爽高潮鸡穴视频| 色男人天堂亚洲男人天堂| 国产亚洲精品高清视频免费| 国产成人AV剧情| 国产 欧美 日韩 黄片| 一色道久久88加勒比一| 日韩精品高清在线| 美女最骚逼逼视频| 人妻熟女av一区二区三区| 97青青草免费在线观看| 美国毛片亚洲社区成人看| 日韩一区二区三区夜色视频| 亚洲 自拍 欧美 一区| 精品日韩欧美精品日韩| 被春药女高潮抽搐喷水视频| 欧美人人做人人爽人人喊|