欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

carbide?combines the excellent properties of hard phase and binding phase, thus possessing a series of advantages. It has high hardness (80-94 HRA) and wear resistance, especially maintaining high hardness and strength at higher temperatures. At 600°C, its hardness exceeds the room temperature hardness of high-speed steel, and at 1,000°C, its hardness surpasses the room temperature hardness of carbon steel, while the strength can still be maintained around 300 MPa. It has a high elastic modulus, typically ranging from 400 to 700 MPa. carbide?has a high compressive strength, capable of withstanding heavy loads and maintaining its shape. It also has a low coefficient of thermal expansion, generally 50% of that of steel. Moreover, it exhibits good chemical stability and superior oxidation and corrosion resistance compared to steel. carbide?has become an indispensable material for tooling and structural applications in almost all industrial sectors and emerging technological fields.

How does deep cryogenic treatment on carbide been carried? 2

What is heat treatment?

Heat treatment is an important method for improving the structural properties of materials. Deep cryogenic treatment, as an extension and advancement of traditional heat treatment processes, has been widely applied in the field of materials heat treatment since the mid-20th century. For conventional steel materials, deep cryogenic treatment can transform residual austenite, enhancing the hardness of the workpiece and stabilizing its dimensions. It can precipitate ultra-fine carbides, improving the wear resistance of the workpiece. It can refine the grain structure, enhancing the impact toughness of tooling and molds. It can also improve the corrosion resistance of martensitic stainless steel and enhance the polishing performance of the workpiece. With the further development and maturity of liquid nitrogen cooling technology and insulation techniques, deep cryogenic treatment of carbide has also attracted the attention of industrial enterprises both domestically and internationally.

Current Status of Deep Cryogenic Treatment Process

Deep cryogenic treatment typically involves cooling the workpiece using liquid nitrogen, which can bring the temperature below -190°C. The microstructure of the treated material undergoes changes in a low-temperature environment, resulting in improved properties. Deep cryogenic treatment was initially proposed by the Soviets in 1939, but it wasn’t until the 1960s that the United States industrialized the technology and started applying it primarily in the aerospace field. In the 1970s, its application expanded to the mechanical manufacturing sector.

Cryogenic treatment process methods

There are two different methods based on the cooling approach: liquid-based and gas-based methods. The liquid-based method involves immersing the material or workpiece directly into liquid nitrogen, rapidly cooling it to the temperature of liquid nitrogen, and then maintaining it at this temperature for a certain period before raising the temperature to a desired level. This method has difficulties in controlling the cooling and heating rates, and it is believed to potentially cause damage to the workpiece due to thermal shocks. The equipment used for liquid-based deep cryogenic treatment is relatively simple, such as liquid nitrogen tanks.

On the other hand, the gas-based method utilizes the latent heat of vaporization of liquid nitrogen (approximately 199.54 kJ/kg) and the heat absorption of low-temperature nitrogen gas to achieve cooling. This method can reach a deep cryogenic temperature of -190°C. It involves bringing the workpiece into contact with low-temperature nitrogen gas, which then circulates through convection heat transfer. The nitrogen gas is vaporized after being sprayed through a nozzle inside a deep cryogenic chamber, utilizing the latent heat of vaporization and heat absorption of low-temperature nitrogen gas to cool the workpiece. The cooling rate can be controlled by adjusting the input of liquid nitrogen, allowing for automatic and precise control of the deep cryogenic treatment temperature. This method imposes less thermal shock and reduces the likelihood of cracking. Currently, the gas-based method is widely accepted by researchers in the field and its cooling equipment mainly consists of temperature-controlled programmable deep cryogenic chambers.

Deep cryogenic treatment can significantly improve the service life, wear resistance, and dimensional stability of materials such as ferrous metals, non-ferrous metals, and metal alloys. It offers considerable economic benefits and market prospects.

How does deep cryogenic treatment on carbide been carried? 3

The development history of deep cryogenic technology

The application of deep cryogenic technology to carbide?was first reported in the 1980s and 1990s. In 1981, Japan’s “Mechanical Technology” and in 1992, the US’s “Modern Machine Shop” reported significant improvements in performance after deep cryogenic treatment of carbide. Since the 1970s, foreign research on deep cryogenic treatment has been highly productive, with countries such as the former Soviet Union, the United States, and Japan successfully utilizing deep cryogenic treatment to enhance the service life, wear resistance, and dimensional stability of tooling and workpieces. The practical application of deep cryogenic treatment by a US tooling company demonstrated that the service life of treated carbide?blades increased by 2 to 8 times, while the refurbishment cycle of carbide?wire drawing dies extended from a few weeks to several months.

In the 1990s, research on deep cryogenic technology for carbide?was initiated in China, achieving certain research results. However, overall, there has been relatively limited and fragmented research on deep cryogenic treatment for carbide. The conclusions obtained from existing research are also inconsistent, indicating the need for further in-depth exploration by researchers. Based on existing research data, it is evident that deep cryogenic treatment primarily improves the wear resistance and service life of carbide, with less noticeable effects on their physical properties.

Как осуществляется глубокая криогенная обработка карбида? 4

The strengthening mechanisms of deep cryogenic treatment

Phase transformation strengthening

carbide contain two crystal structures of cobalt (Co): face-centered cubic (α-phase) and hexagonal close-packed (ε-phase). The ε-phase has a smaller friction coefficient and better wear resistance compared to the α-phase. At temperatures above 417°C, the α-phase has lower free energy, so Co exists in the α-phase form. Below 417°C, the ε-phase has lower free energy, and the high-temperature stable α-phase transforms into the energetically favored ε-phase. However, due to the presence of WC particles and solute atoms in the α-phase, there are significant constraints on the phase transformation, making the transformation from α-phase to ε-phase more difficult. Deep cryogenic treatment increases the free energy difference between the α and ε phases, enhancing the phase transformation driving force and increasing the amount of ε-phase transformation. Deep cryogenic treatment causes some atoms dissolved in Co to precipitate as compounds due to decreased solubility, increasing the hard phase in the Co matrix, hindering dislocation movement, and providing strengthening through the second-phase particle effect.

Surface residual stress strengthening

Studies have shown that deep cryogenic treatment increases the residual compressive stress in the surface layer. Many researchers believe that the presence of a certain level of residual compressive stress in the surface layer significantly improves the service life of carbide. During the cooling process after sintering, the binder phase Co experiences tensile stress, while the WC particles experience compressive stress. Tensile stress can cause damage to the Co binder. Therefore, some researchers believe that the increase in surface compressive stress caused by deep cryogenic treatment can alleviate or partially offset the tensile stress generated during the cooling process after sintering in the binder phase, and even adjust it to compressive stress, reducing the formation of microcracks.

Другие механизмы укрепления

It is believed that after deep cryogenic treatment, the formation of η-phase particles in the matrix, along with the WC particles, makes the matrix denser and more robust. The formation of η-phase also consumes the Co in the matrix. The decrease in Co content in the binder phase increases the overall thermal conductivity of the material. The growth of carbideparticle size and adjacency also enhances the thermal conductivity of the matrix. The increased thermal conductivity allows for faster heat dissipation at the cutting edge of the tooling, improving wear resistance and high-temperature hardness. Additionally, the contraction and densification of Co during deep cryogenic treatment strengthen the Co’s grip on the WC particles. Physicists believe that deep cryogenic treatment alters the atomic and molecular structure of the metal, leading to improved properties.

Overall, deep cryogenic treatment enhances the wear resistance and service life of carbide?primarily by the phase transformation strengthening and surface residual stress strengthening mechanisms, while the impact on physical properties is less significant.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

日韩欧美国产综合久久-国产精品一起草在线观看| 亚洲欧美激情自拍色图-国产亚洲精品sese在线播放| 亚洲愉拍自拍欧美精品app-亚洲一区不卡在线视频| 国产午夜精品理论片A级漫画-久久精品国产99亚洲精品| 婷婷综合在线视频观看-亚洲一区二区三区香蕉| 欧美一区二区三区调教视频-三上悠亚国产精品一区二区三区| 少妇人妻无码久久久久久-综合图片亚洲网友自拍| 色综合色综合久久综合频道-埃及艳后黄版在线观看| 91精品国产无线乱码在线-999精品视频免费看| 亚洲午夜久久久精品影院-性感美女在线观看网站国产| 中文字幕社区电影成人-欧美精美视频一区二区三区| 亚洲综合久久综合激情-日韩欧美精品人妻二区少妇| 在线视频成人一区二区-亚洲另类中文字幕在线| 在线观看中午中文乱码-2021国产一级在线观看| 久久精品亚洲国产av久-国产精品视频一区二区免费| 欧美一级二级三级在线看-日韩精品欧美嫩草久久99| 白嫩美女娇喘呻吟高潮-久久一区二区三区日产精品| 日本女优一卡二卡在线观看-欧美大胆a级视频秒播| 亚洲欧美日韩二区三区-国产在线欧美一区日韩二区| 中文字幕日韩精品不卡一区二区-成人av在线观看一区二区| 国产福利视频一区二区三区-日韩人妻中文视频精品| 国产小黄片高清在线观看-涩涩鲁精品亚洲一区二区| 黑丝av少妇精品久久久久久久-中文字幕久久久人妻无码| 精品老熟妇一区二区三区-日韩丰满一区二区三区| 在线观看中午中文乱码-2021国产一级在线观看| 亚洲一区二区免费av-中文字幕人妻久久久一区二区三区| 俄罗斯胖老太太黄色特级片-国产精品黑丝美腿美臀| 亚洲福利视频免费观看-中文字幕日本不卡一区二区| 亚洲精品激情一区二区-久久成人国产欧美精品一区二区| 国产精品二区高清在线-91精品91久久久久久| 黄色美女网站大全中文字幕-欧美韩国日本一区二区| 在线免费观看黄片喷水-国产精品白丝网站在线观看| 91九色蝌蚪丝袜人妻-国产精品9999网站| 亚洲欧美另类综合偷拍-婷婷社区综合在线观看| 精品一区二区三区av在线-欧美黑人巨大精品一区二区| 国产在线一区二区三区欧美-久久偷拍精品视频久久| 免费av一区在线观看-国产精品视频高潮流白浆视频免费| 人妻少妇无乱码中文字幕-人成免费视频一区二区| 男女做爰猛烈啪啪吃奶在线观看-人妻连裤丝袜中文字幕| 天天干天天干2018-91人妻人人澡人爽精品| 亚洲av专区在线观看国产-丰满人妻av一区二区三区|