欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

In modern cutting tool materials, carbide?dominates. The development of coated carbide?tools around 1968 marked a significant revolution in the field of tool materials, advancing the level and capability of cutting processes considerably. The heat resistance of these tools has increased to over 1000-1200°C, while the processing temperature for Physical Vapor Deposition (PVD) typically remains below 500°C, making it a viable final treatment process for carbide?coatings. This enhances the cutting performance of carbide?tools, leading to their widespread use in high-speed cutting and machining of ultra-hard materials. Their excellent cost-performance ratio has propelled the development of carbide?tools to a new level.

Currently, TiN is the primary coating used for cutting tools; however, traditional nitride coatings like TiN have low hardness, poor wear resistance, and particularly weak thermal stability, which limits their application in dry cutting tools. Improvements in TiN coatings have focused on developing new TiN-based alloys and multi-component composite layers, aiming to achieve wear-resistant, high-temperature coatings through the introduction of alloying elements (such as Al, Zr, Cr, V) into the TiN coating. This forms a new multi-element coating system that enhances coating hardness and improves wear resistance and thermal stability. The novel TiAlN coating, formed by implanting Al atoms into the TiN lattice, has become one of the most widely used tool coatings in global manufacturing.

In recent years, to further enhance the high-temperature hardness and oxidation resistance of tool coatings, as well as to improve the bonding strength between the coating and the substrate, research has shifted towards multi-element and multilayer composite coating systems. This paper employs unbalanced magnetron sputtering to prepare composite coatings such as TiN, TiAlN, TiN-MoS?, and CrAlTiN on carbide?tools. It conducts cutting comparison tests on TiN and its composite-coated tools under dry cutting conditions, investigating the mechanical and cutting performance of TiN-based composite coated tools. This research is significant for the further development and promotion of coated tools.

How to Assess Coated Carbide?Tools' Cutting Performance 2

Experimental Methods

Composite coatings of TiN, TiAlN, TiN-MoS?, and CrAlTiN were deposited on YT14 carbide?tools using the closed-field unbalanced magnetron sputtering ion plating equipment from Teer. The nano-hardness and elastic modulus of the coatings were measured using a Nano Test 600 nano-hardness tester with a diamond tip under a load of 3 mN. To minimize experimental errors, the hardness and elastic modulus values reported are the averages of five measurements. Additionally, Vickers microhardness testing was conducted to validate the hardness measurements.

The morphology and phase structure of the tool coatings were analyzed using scanning electron microscopy (SEM) and an Advance 8 X-ray diffractometer (XRD). Cutting tests on the coated tools were performed in a CNC machining center, with the workpiece material being PCrNi3MoVA steel. The wear of the cutting edge was observed and measured using a 30x tool microscope. The tool life was evaluated based on the wear land width (VBc) on the flank face exceeding 0.6 mm as the criterion for tool lifespan, allowing for a comparison of the cutting life of the tools.

 

Experimental Results and Analysis

Hardness and Elastic Modulus Testing of Coatings

Figure 1 shows the loading-unloading curve obtained during the nano-hardness measurement of the CrAlTiN composite coating. This curve allows us to determine both the hardness and elasticity of the CrAlTiN film. The elastic recovery coefficient

R=(hmax-hres)/hmax ?is defined, where hmax?is the indentation depth at maximum load, and

hres?is the residual depth after unloading. A higher R value indicates greater elasticity. From the nano-indentation curve in Figure 2, the hardness of the CrAlTiN film is found to be 33 GPa, with an elastic modulus of 675 GPa.

Figure 2 also compares the nano-hardness of TiN, TiAlN, TiN-MoS?, and CrAlTiN coatings. The measured nano-hardness values are 18 GPa for TiN, 30 GPa for TiAlN, 15 GPa for TiN-MoS?, and 33 GPa for CrAlTiN. The order of nano-hardness for the four coatings is: CrAlTiN > TiAlN > TiN > TiN-MoS?. The addition of composite elements significantly alters the hardness of the TiN coating; in particular, the incorporation of Al increases the hardness by 12 GPa, while the addition of Cr and Al collectively raises the nano-hardness by 15 GPa. This indicates that Cr and Al form hard phases within the composite coating, enhancing its hardness. Conversely, the combination of TiN with MoS?results in a 3 GPa decrease in nano-hardness, suggesting that the MoS?phase exists as a soft phase within the coating, reducing hardness. However, this lubricating phase significantly improves the coating’s lubrication properties and lowers its friction coefficient.

How to Assess Coated Carbide?Tools' Cutting Performance 3

Figure 3 presents the measured elastic modulus values for each coating. From the figure, it can be observed that the elastic modulus of the TiN coating is 214 GPa, that of the TiAlN coating is 346 GPa, the TiN-MoS? coating has an elastic modulus of 164 GPa, and the CrAlTiN coating reaches 675 GPa. The order of elastic modulus for the four coatings is CrAlTiN > TiAlN > TiN > TiN-MoS?. This indicates that the elastic modulus of the coatings is directly proportional to their hardness. Notably, the CrAlTiN coating shows the greatest relative increase in elastic modulus, with a value significantly higher than the other coatings at 675 GPa. This demonstrates that the deposited CrAlTiN coating possesses both high hardness and high elasticity.

How to Assess Coated Carbide?Tools' Cutting Performance 4

At the same time, Vickers microhardness tests were conducted on each tool coating using a Vickers hardness tester, with an applied load of 15 g for 10 seconds. The results are shown in Figure 4. Although the testing principles of the Vickers microhardness and nano-indentation methods differ, a comparison of the nano-hardness values in Figure 2 and the microhardness values in Figure 4 reveals that the trends in microhardness for each coating are consistent with those of nano-hardness. Notably, the CrAlTiN coating exhibits the highest Vickers microhardness, measuring HV1560.

 

Drilling Tests

The four types of coated carbide?tools—TiN, TiAlN, TiN-MoS?, and CrAlTiN—were used to process the same material, PCrNi3MoVA steel, and the wear of the tools was evaluated to compare the durability of the different coated tools. The surface morphology of the coatings for the TiN, TiAlN, TiN-MoS?, and CrAlTiN tools is shown in Figure 5, all at a magnification of 600x. The figure illustrates significant differences in surface morphology among the four coatings, indicating that the incorporation of composite elements has greatly altered the crystallization state of the TiN compound.

The TiN coating shows a uniform surface microstructure with relatively small grains. In contrast, the TiAlN coating has a rougher surface morphology with larger grain structures. The addition of Al results in numerous bright white hard particles of aluminum oxide or aluminum nitride appearing in the TiN lattice. The TiN-MoS? coating features a substantial distribution of flake-like mixed structures, mainly composed of MoS? uniformly dispersed within the TiN/MoS?coating, contributing to its self-lubricating properties. The CrAlTiN coating exhibits relatively fine grains and a dense, uniform structure with a significant presence of hard particles on the surface.

The cutting test conditions for the coated tools are shown in Table 1. During the experiments, the conditions were kept constant, and the cutting time was recorded until the wear land width (VBc) on the flank face exceeded 0.6 mm, which was used as the criterion for tool life evaluation. The comparison of cutting life for the tools is presented in Figure 6.

From Figure 6, the ranking of cutting life for the four coated tools is as follows: CrAlTiN > TiN-MoS? > TiAlN > TiN. This indicates that the Cr and Al elements in the TiN coating form hard phases, and the addition of Al is beneficial for the formation of aluminum oxides, which helps prevent further oxidation during the cutting process, thereby enhancing the tool’s oxidation resistance and contributing to an increase in cutting life. Additionally, the MoS? lubricating phase helps reduce the friction coefficient and improve the wear resistance of the tools, further extending their service life.

How to Assess Coated Carbide?Tools' Cutting Performance 5

How to Assess Coated Carbide?Tools' Cutting Performance 6

In summary, the analysis indicates that the multi-component composite coatings effectively leverage the advantages of various coating materials, resulting in enhanced overall performance, excellent wear resistance, toughness, and reduced friction. This helps to minimize built-up edge formation while providing resistance to mechanical and thermal shocks, significantly extending tool life. Therefore, it is anticipated that the usage of multi-component composite coated tools will continue to increase in the future.

 

XRD Analysis

XRD analysis was conducted on the CrAlTiN tool coating, which exhibited the best cutting performance, with the results shown in Figure 8. The XRD patterns reveal that at room temperature, the crystalline phases of the coating are primarily composed of Cr, CrN, Cr?N, and TiN, with no amorphous phases detected. Further high-resolution scanning of the coating surface shows a significant distribution of hard phase particles. Combined with X-ray diffraction analysis, it is evident that these hard phases mainly consist of Cr, CrN, Cr?N, and TiN grains. These hard grains contribute to the improved cutting life of the coated tools.

coated tool  coated

Application Prospects

Coating technology for tools has proven to be an effective way to enhance the cutting performance of carbide?tools, improve cutting efficiency, and reduce processing costs. Since its introduction in the late 1970s, it has rapidly developed and been adopted worldwide. By the late 1980s, the proportion of complex carbide?tools using coatings in industrialized countries exceeded 60%, significantly improving cutting efficiency and yielding notable economic benefits. Currently, over 80% of carbide?tools used in CNC machines in Japan and Germany are coated, and the adoption of coatings in countries like Russia is also increasing.

However, the usage of coated tools in China remains limited, with even high-performance CNC machines often relying on standard carbide?tools with inferior cutting performance. This restricts the full potential of expensive equipment. Therefore, developing composite coating processes for carbide?tools is crucial for shifting China away from its reliance on imported high-performance tools and advancing the local coating technology.

Although coated carbide?tools are priced 50% to 100% higher than standard tools, their superior cutting performance, longer tool life, and higher production efficiency lead to lower costs per part compared to uncoated tools. This is particularly beneficial for complex tools with longer manufacturing cycles, such as gear cutters and broaches, where using coated tools not only offsets the coating costs but also provides significant economic benefits and better machining quality

Furthermore, coated tools facilitate dry cutting, eliminating the increased production costs and environmental pollution associated with cutting fluids, thus protecting worker health. Therefore, from both economic and social benefit perspectives, using coated carbide?tools is advantageous. In the future, as research into multi-component and multilayer composite coating technologies progresses, the lifespan of coated carbide?tools will further improve, significantly lowering manufacturing costs and broadening the application of these coatings.

 

Вывод

This study utilized the closed-field unbalanced magnetron sputtering PVD coating process to prepare composite coatings such as TiN, TiAlN, TiN-MoS?, and CrAlTiN. Comparative tests of the mechanical and cutting performance of these coatings yielded the following results:

1.Nano-indentation analysis showed the order of nano-hardness for the four tool coatings as follows: CrAlTiN > TiAlN > TiN > TiN-MoS?. The elastic modulus was found to be proportional to hardness, and Vickers microhardness measurements further validated the accuracy of the nano-indentation tests.

2.Under dry cutting conditions while drilling PCrNi3MoVA steel, the cutting life of the coated tools ranked as: CrAlTiN > TiN-MoS? > TiAlN > TiN, indicating that multi-component composite coatings offer significantly better cutting performance than standard TiN coatings, marking a promising direction for the future development of coated tools.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

国产av剧情护士麻豆-三级国产精品欧美在线观看| 91蜜桃传媒一二三区-日韩欧美国产一区呦呦| av噜噜国产在线观看-欧美视频亚洲视频一区二区三区| 一区二区三区国产高清mm-美女张开腿让帅哥桶爽| 国产黄污网站在线观看-成人av电影中文字幕| 人妻日韩精品中文字幕图片-麻豆极度性感诱人在线露脸| 国产成人精品免费视频大全办公室-亚洲欧美日本综合在线| 亚洲国产视频不卡一区-激情欧美视频一区二区| 三上悠亚免费观看在线-青青草原在线视频观看精品| 亚洲精品一区网站在线观看-黄页视频免费观看网站| 亚洲欧洲一区二区福利-亚洲欧美日韩高清中文| 欧美亚洲另类久久久精品-国产精品一区二区亚洲推荐| 中文字幕偷拍亚洲九色-亚洲视频不卡一区二区天堂| 91大神国内精品免费网站-亚洲免费电影一区二区| 国产aa视频一区二区三区-国产精品久久久久久久毛片动漫| 国产老熟女激情小视频-成人一区二区人妻不卡视频| 人妻少妇无乱码中文字幕-人成免费视频一区二区| 在线观看中午中文乱码-2021国产一级在线观看| 精品一区二区三区av在线-欧美黑人巨大精品一区二区| 小12萝自慰喷水亚洲网站-chinese偷拍一区二区三区| 欧美视频在线观看国产专区-亚洲91精品在线观看| 久久人妻一区二区三区欧美-国内不卡的一区二区三区| 色噜噜噜噜一区二区三区-欧美最猛黑人做爰视频| 日韩亚洲一区二区三区av-欧美综合在线观看一区二区三区| 97香蕉久久国产在线观看-麻豆黄色广告免费看片| 亚洲av乱码一区二区-九九免费在线观看视频| 国产一级片久久免费看同-麻豆精品尤物一区二区青青| 免费午夜福利在线观看-黄色日本黄色日本韩国黄色| 天天干天天干2018-91人妻人人澡人爽精品| 久久蜜桃精品一区二区-麻豆视频啊啊啊好舒服| 中文字幕社区电影成人-欧美精美视频一区二区三区| 熟女少妇免费一区二区-麻豆一区二区三区免费在线观看| 日韩二级视频在线观看-美女扒开奶罩露出奶子的视频网站| 91蜜桃传媒一二三区-日韩欧美国产一区呦呦| 色综合色综合久久综合频道-埃及艳后黄版在线观看| 天天干天天天天天天天-亚洲综合av在线三区| 国产精品熟女视频一区二区-国产日韩精品欧美一区喷水| 婷婷六月视频在线观看-久久亚洲综合国产精品| 日韩中文字幕v亚洲中文字幕-日韩亚洲av免费在线观看| 亚洲视频一区二区三区免费-国产一级黄色大片在线| 国产亚洲欧美一区91-亚洲欧美一区二区在线|