欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

Усталостные трещины обычно возникают в результате периодической пластической деформации на локальных участках. Усталость определяется как ?отказ при многократной нагрузке или других типах условий нагрузки, и этого уровня нагрузки недостаточно, чтобы вызвать отказ при однократном приложении?. Эта пластическая деформация возникает не из-за теоретического напряжения на идеальном компоненте, а потому, что поверхность компонента не может быть фактически обнаружена.

Август Велер является пионером исследования усталости и предлагает эмпирический метод. Между 1852 и 1870 годами Велер изучал прогрессирующий отказ железнодорожных осей. Он построил испытательный стенд, показанный на рисунке 1. Этот испытательный стенд позволяет одновременно вращать и изгибать две железнодорожные оси. Велер построил график зависимости между номинальным напряжением и количеством циклов, приводящих к отказу, который позже стал известен как диаграмма SN. Каждая кривая до сих пор называется линией авёхлера. Метод Sn по-прежнему является наиболее широко используемым методом. Типичный пример этой кривой показан на рисунке 1.

Статика эксперимента Августа Велера, показывающая, как 4 элемента влияют на усталостную трещину 2
Рисунок 1. Испытание W?hler на усталость при изгибе при вращении.

Через линию Вёлера можно наблюдать несколько эффектов. Во-первых, отметим, что кривая SN ниже точки перехода (около 1000 циклов) недействительна, поскольку номинальное напряжение здесь является упругопластическим. Позже мы покажем, что усталость вызывается высвобождением энергии деформации пластического сдвига. Следовательно, линейной зависимости между напряжением и деформацией перед разрушением нет, и ее нельзя использовать. Между точкой перехода и пределом выносливости (около 107 циклов) справедлив анализ на основе Sn. Выше предела выносливости наклон кривой резко уменьшается, поэтому эту область часто называют областью ?бесконечного срока службы?. Но это не так. Например, алюминиевый сплав не будет иметь бесконечный ресурс, и даже сталь не будет иметь бесконечный ресурс при нагрузке с переменной амплитудой.

С появлением современных технологий усиления люди могут более детально изучать усталостные трещины. Теперь мы знаем, что возникновение и распространение усталостных трещин можно разделить на две стадии. На начальном этапе трещина распространяется под углом около 45 градусов к приложенной нагрузке (вдоль линии максимального напряжения сдвига). После пересечения двух-трех границ зерен его направление меняется и вытягивается в направлении около 90 градусов относительно приложенной нагрузки. Эти две стадии называются трещиной стадии I и трещиной стадии II, как показано на рисунке 2.

Статика эксперимента Августа Велера, показывающая, как 4 элемента влияют на усталостную трещину 3
Рис. 2 Схематическая диаграмма роста трещины на стадии I и стадии II

Если мы наблюдаем трещину стадии I при большом увеличении, мы можем видеть, что знакопеременное напряжение приведет к образованию сплошной полосы скольжения вдоль плоскости максимального сдвига. Эти скользящие ленты скользят вперед и назад, как колода карт, что приводит к неровным поверхностям. Вогнутая поверхность в конечном итоге образует ?почковающуюся? трещину, как показано на рисунке 3. В фазе I трещина будет расширяться в этом режиме до тех пор, пока не встретится с границей зерна, и временно остановится. Когда к соседним кристаллам будет приложено достаточно энергии, процесс продолжится.

Статика эксперимента Августа Велера, показывающая, как 4 элемента влияют на усталостную трещину 4
Рисунок 3 Принципиальная схема непрерывной ленты скольжения

После пересечения двух или трех границ зерен направление распространения трещины теперь входит в режим фазы II. На этом этапе изменились физические свойства распространения трещины. Сама трещина представляет собой макропрепятствие для потока напряжений, вызывая высокую концентрацию пластических напряжений в вершине трещины. Как показано на рис. 4. Следует отметить, что не все трещины стадии I разовьются до стадии II.

Статика эксперимента Августа Велера, показывающая, как 4 элемента влияют на усталостную трещину 5
Рис4

Чтобы понять механизм распространения стадии II, нам необходимо рассмотреть ситуацию с поперечным сечением вершины трещины во время цикла напряжения. Как показано на рисунке 5. Цикл усталости начинается, когда номинальное напряжение находится в точке ?а?. По мере увеличения интенсивности напряжения и прохождения через точку ?В? мы замечаем, что вершина трещины раскрывается, что приводит к локальной деформации пластического сдвига, и трещина распространяется до точки ?С? в исходном металле. Когда растягивающее напряжение уменьшается через точку ?d?, мы наблюдаем, что вершина трещины закрывается, но остаточная пластическая деформация оставляет уникальную зазубрину, так называемую ?линию разреза?. Когда весь цикл заканчивается в точке ?е?, мы наблюдаем, что трещина теперь увеличила длину ?Da? и образовала дополнительные линии сечения. Теперь понятно, что диапазон роста трещины пропорционален диапазону приложенной упруго-пластической деформации вершины трещины. Больший диапазон циклов может формировать больший Da.

Статика эксперимента Августа Велера, показывающая, как 4 элемента влияют на усталостную трещину 6
Рис. 5 Принципиальная схема распространения трещины на II стадии

Факторы, влияющие на скорость роста усталостной трещины

Исследовано и концептуально объяснено влияние следующих параметров на скорость роста усталостной трещины:

1 Напряжение сдвига

Из диаграммы видно, что определенное ?количество? касательного напряжения высвобождается при периодическом изменении силы номинального напряжения. И чем больше диапазон изменения напряжения, тем больше высвобождается энергии. На кривой SN, показанной на рисунке 1, мы видим, что усталостная долговечность уменьшается экспоненциально с увеличением диапазона циклов напряжения.

Статика эксперимента Августа Велера, показывающая, как 4 элемента влияют на усталостную трещину 7
Рис. 6 упругопластические напряжения и деформации вдоль поверхности скольжения и в корне трещины

2 средний стресс

Среднее напряжение (остаточное напряжение) также является фактором, влияющим на интенсивность усталостного разрушения. Концептуально, если напряжение расширения приложено к трещине фазы II, трещина будет вынуждена открыться, поэтому любой цикл напряжения будет иметь более значительный эффект. Напротив, если приложено среднее сжимающее напряжение, трещина будет вынуждена закрыться, и любой цикл напряжения должен преодолеть предварительное сжимающее напряжение, прежде чем трещина сможет продолжить расширение. Аналогичные концепции применимы и к трещинам I стадии.

3 отделка поверхности

Поскольку усталостные трещины обычно сначала появляются на поверхности компонентов, где есть дефекты, качество поверхности серьезно влияет на вероятность возникновения трещин. Хотя большинство испытуемых образцов материалов имеют зеркальное покрытие, они также обеспечивают наилучшую усталостную долговечность. На самом деле, большинство компонентов нельзя сравнивать с образцами, поэтому нам необходимо модифицировать усталостные свойства. Чистота поверхности оказывает большее влияние на усталость компонентов, подвергающихся циклам напряжения с малой амплитудой.

Статика эксперимента Августа Велера, показывающая, как 4 элемента влияют на усталостную трещину 8
Рис. 7 Схематическая диаграмма влияния последовательности циклов Влияние шероховатости поверхности может быть выражено путем моделирования, то есть путем умножения кривой SN на параметр коррекции поверхности на пределе выносливости.

4 обработка поверхности

Обработка поверхности может использоваться для повышения сопротивления усталости компонентов. Целью поверхностной обработки является формирование остаточных сжимающих напряжений на поверхности. В период малой амплитуды напряжения на поверхности, очевидно, невелики и даже сохраняют сжатое состояние. Таким образом, усталостная долговечность может быть значительно увеличена. Однако, как мы указывали, эта ситуация справедлива только для компонентов, подверженных циклам напряжения с малой амплитудой. Если применяется период высокой амплитуды, период предварительной компрессии будет преодолен периодом высокой амплитуды, и его преимущества будут потеряны. Как и в случае с качеством поверхности, влияние обработки поверхности можно показать с помощью моделирования.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

国产av剧情护士麻豆-三级国产精品欧美在线观看| 中文字幕精品一区二区日本99-青青国产成人久久91网| 日韩中文字幕v亚洲中文字幕-日韩亚洲av免费在线观看| 熟女少妇免费一区二区-麻豆一区二区三区免费在线观看| 亚洲另类自拍唯美另类-99国产精品兔免久久| 97香蕉久久国产在线观看-麻豆黄色广告免费看片| 亚洲欧美另类综合偷拍-婷婷社区综合在线观看| 亚洲欧洲成视频免费观看-国产福利一区二区在线观看| 亚洲日本一区二区三区黄色电形-中文字幕乱码免费熟女| 婷婷综合在线视频观看-亚洲一区二区三区香蕉| 深夜三级福利在线播放-日韩精品一区二区在线天天狠天| 亚洲精品蜜桃在线观看-国产欧美日韩在线观看精品观看| 白嫩美女娇喘呻吟高潮-久久一区二区三区日产精品| 亚洲国产精品日韩欧美-国产又粗又硬又大爽黄| 日本中文字幕永久在线人妻蜜臀-欧美一区二区的网站在线观看| 亚洲国产精品一区二区av-日本一级黄色一区二区| 欧美日韩国产综合四区-爆操极品尤物熟妇14p| 亚洲av综合av一区东京热-黄页免费视频网站在线观看| 日韩亚洲欧美综合在线-成人在线网站在线观看| 欧美日韩国产亚洲免费-肉体粗喘娇吟国产91| 欧美日韩精品人妻在线-在线播放中文字幕一区| 久久精品亚洲无中文东京热-日本妹子内谢视频一区| 国产精品电影在线一区-亚洲国产大片一区二区官网| 美女把腿张开给帅哥桶-无码无套少妇18p在线直播| 两性污污视频网站在线观看-亚洲欧美日韩激情一区| 在线视频成人一区二区-亚洲另类中文字幕在线| 色噜噜噜噜一区二区三区-欧美最猛黑人做爰视频| 男人的天堂久久精品激情-最新亚洲精品a国产播放| 日韩高清在线观看一区二区-美产av在线免费观看| 欧美字幕一区二区三区-好吊妞欧美一区二区在线观看| 亚洲国产中文欧美一区二区三区-国产精品一区二区视频成人| 一区二区三区女同性恋-熟妇高潮一区二区高清网络视频| 国产免费高清av在线播放-成年人在线播放中文字幕| 日本欧美在线视频观看-国产一区二区三区无码下载快播| 国模自慰一区二区三区-日韩一级黄色片天天看| 精品一区二区三区av在线-欧美黑人巨大精品一区二区| 久久夜色精品亚洲噜国产av-大香蕉伊人猫咪在线观看| 丝袜美腿人妻连续中出-在线观看日韩三级视频| av一区免费在线观看-中文字幕日韩国产精品视频| 日本亚洲精品中字幕日产2020-很黄很黄的裸交视频网站| 国模自慰一区二区三区-日韩一级黄色片天天看|