欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

First, the molecular beam epitaxial profileIn the ultra-high vacuum environment, with a certain thermal energy of one or more molecules (atoms) beam jet to the crystal substrate, the substrate surface reaction processMolecules in the “flight” process almost no collision with the ambient gas, in the form of molecular beam to the substrate, the epitaxial growth, hence the name.Properties: A vacuum deposition methodOrigin: 20th century, the early 70s, the United States Bell laboratoryApplications: epitaxial growth atomic level precise control of ultra-thin multi-layer two-dimensional structure materials and devices (super-character, quantum wells, modulation doping heterojunction, quantum yin: lasers, high electron mobility transistors, etc.); combined with other processes, But also the preparation of one-dimensional and zero-dimensional nano-materials (quantum lines, quantum dots, etc.).Typical features of MBE:(1) The molecules (atoms) emitted from the source furnace reach the substrate surface in the form of a “molecular beam” stream. Through the quartz crystal film thickness monitoring, can strictly control the growth rate.(2) molecular beam epitaxy growth rate is slow, about 0.01-1nm / s. Can achieve single atomic (molecular) layer epitaxy, with excellent film thickness controllability.(3) By adjusting the opening and closing of the baffle between the source and the substrate, the composition and the impurity concentration of the film can be strictly controlled, and selective epitaxial growth can be achieved.(4) non-thermal equilibrium growth, the substrate temperature can be lower than the equilibrium temperature, to achieve low temperature growth, can effectively reduce the interdiffusion and self-doping.(5) with reflective high-energy electron diffraction (RHEED) and other devices, can achieve the original price observation, real-time monitoring.Growth rate is relatively slow, both MBE is an advantage, but also its lack, not suitable for thick film growth and mass production.Second, silicon molecular beam epitaxy1 basic profileSilicon molecular beam epitaxy includes homogeneous epitaxy, heteroepitaxy.The silicon molecular beam epitaxy is the epitaxial growth of silicon (or silicon-related materials) on a suitably heated silicon substrate by physical deposition of atoms, molecules or ions.(1) during the epitaxial period, the substrate is at a lower temperature.(2) Simultaneous doping.(3) the system to maintain high vacuum.(4) pay special attention to the atomic clean surface.Figure 1 Schematic diagram of the working principle of silicon MBE2 Development history of silicon molecular beam epitaxyDeveloped relative to CVD defects.CVD defects: substrate high temperature, 1050oC, to the doping serious (with high temperature). The original molecular beam epitaxy: the silicon substrate heated to the appropriate temperature, vacuum evaporation of silicon to the silicon substrate, the epitaxial growth.Growth Criteria: The incident molecules move sufficiently to the hot surface of the substrate and are arranged in the form of a single crystal.3 The importance of silicon molecular beam epitaxyThe silicon MBE is carried out in a strictly controlled cryogenic system.(1) can well control the impurity concentration to reach the atomic level. The undoped concentration is controlled at <3 × 1013 / cm3.(2) The epitaxy can be carried out under the best conditions without defects.(3) The thickness of the epitaxial layer can be controlled within the thickness of the single atomic layer, superlattice epitaxy, several nm ~ several tens of nm, which can be designed manually, and the preparation of excellent performance of the new functional materials.(4) Homogeneous epitaxy of silicon, heteroepitaxy of silicon.4 epitaxial growth equipmentDevelopment direction: reliability, high performance and versatilityDisadvantages: high prices, complex, high operating costs.Scope: can be used for silicon MBE, compound MBE, III-V MBE, metal semiconductor MBE is developing.Basic common features:(1) basic ultra-high vacuum system, epitaxial chamber, Nuosen heating room;(2) analysis means, LEED, SIMS, Yang EED, etc .;(3) injection chamber.Figure 2 Schematic diagram of silicon molecular beam epitaxial system(1) electron beam bombardment of the surface of the silicon target, making it easy to produce silicon molecular beam. In order to avoid the radiation of the silicon molecular beam to the side to cause adverse effects, large area screen shielding and collimation is necessary.(2) resistance to heating the silicon cathode can not produce strong molecular beam, the other graphite citrus pots have Si-C stained, the best way is to electron beam evaporation to produce silicon source. Because, some parts of the silicon MBE temperature is higher, easy to evaporate, silicon low evaporation pressure requirements of the evaporation source has a higher temperature. At the same time, the beam density and scanning parameters to control. Making the silicon melting pit just in the silicon rod, silicon rods become high-purity citrus.There are several kinds of monitoring molecular beam:(1) Quartz crystal is often used to monitor beam current, beam shielding and cooling appropriate, can be satisfied with the results, but the noise affects the stability. After several μm, the quartz crystal loses its linearity. Frequent exchange, the main system is often inflated, which is not conducive to work.(2) small ion table, measured molecular beam pressure, rather than measuring the molecular beam flux. Due to the deposition on the system components leaving the standard.(3) low-energy electron beam, through the molecular beam, the use of electrons detected by the excitation fluorescence. The atoms are excited and quickly degrade to the ground state to produce uv fluorescence, and the optical density is proportional to the beam density after optical focusing. Do the feedback control of the silicon source. Inadequate: cut off the electron beam, most of the infrared fluorescence and background radiation will make the signal to noise ratio deteriorated to the extent of instability. It only measured atomic class, can not measure molecular substances.(4) Atomic absorption spectra, monitoring the beam density of doped atoms.With the intermittent beam current, Si and Ga were detected by 251.6nm and 294.4nm optical radiation respectively. The absorption intensity of the beam through the atomic beam was converted into atomic beam density and the corresponding ratio was obtained.Molecular beam epitaxy (MBE) substrate base is a difficult point.MBE is a cold wall process, that is, silicon substrate heating up to 1200 ℃, the environment to room temperature. In addition, the silicon wafer to ensure uniform temperature. Hill resistance refractory metal and graphite cathode, the back of the radiation heating, and the entire heating parts are installed in liquid nitrogen cooled containers, in order to reduce the thermal radiation of the vacuum components. The substrate is rotated to ensure uniform heating. Free deflection, can enhance the secondary implantation doping effect.
Fonte: Meeyou Carbide

Deixe uma resposta

O seu endere?o de e-mail n?o será publicado. Campos obrigatórios s?o marcados com *

为什么搜索不到裸体| 中国老女人 操逼 视频| 国产精品久久久69粉嫩| 美女被插入小穴爆操视频| 露脸校花求大鸡巴插| 日本一二区视频在线观看| 看看美日韩操逼吧| 亚洲色欲久久久久综合网| 国产老妇伦国产熟女91| av中文字幕一区二区精品久久| 鸡巴插进缝里 日本| 无码av一区二区大桥久未| 男生的小鸡鸡插进女生的桃子 里| 欧美综合区自拍亚洲综合| 波多野结衣福利视频| 国产一区二区三区精品片| 熟妇女人妻丰满中文字幕| 很黄很爽的免费视频大全| 成人久久久久久蜜桃免费| 亚洲福利小视频在线观看| 欧美伦禁片在线播放| 午夜十八禁福利亚洲一区二区| 欧美一区二区三区色婷婷月色| 日韩精品人妻一区二区免费| 狠狠干无码日韩AV| 欧美猛男一区二区三区快播| 熟女菊蕾老妇俱乐部视频| 国产成人AV一区二区在线观看| 国产裸模大尺度私拍视频| 亚洲一区二区女同性恋免费看| 奇米一区二区三区视频在线观看| 国产美女裸体视频全免费| 精品人妻少妇一区二区三区不卡| 精品无码国产一区二区三区A| 日韩乱码一区二区三区中文字幕| 日韩一区二区三区夜色视频| 在线视频观看一区| 日本亚欧乱色视频69室| 青青河边草直播免费观看| 大鸡巴操大屁股美女视频| 日本一区二区高清免费不卡|