欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

In machining, the tools used for hole processing are an essential part of mechanical operations. These tools include drills, reamers, boring tools, countersinks, and internal surface broaches, among others. Among various machining techniques, boring is considered a more challenging process. It involves using a single blade (or tool holder) to machine micrometer-level holes with specific tolerances, such as H7, H6, etc.

A cemented carbide boring tool is one type of tool used for boring operations. It is commonly used for internal hole machining, hole enlargement, internal contouring, and similar tasks. The tool may have one or two cutting edges and is designed specifically for roughing, semi-finishing, or finishing operations on existing holes. Cemented carbide boring tools can be used on boring machines, lathes, or milling machines.

narz?dzie do wiercenia

Types of Boring Tools

Cemented Carbide Boring Tools are mainly classified into three types based on the number of cutting edges: single-edge boring tools, double-edge boring tools, and multi-edge boring tools. They can also be categorized according to the processed surface: through-hole boring tools, blind-hole boring tools, step-hole boring tools, and end-face boring tools. Furthermore, they can be classified by their structure: solid type, assembly type, and adjustable type.

Below, we will focus on two commonly used cemented carbide boring tools: the single-edge boring tool and the double-edge boring tool.

 

Single-edge Boring Tool

The structure of the single-edge boring tool is similar to that of a lathe tool. The tool head is mounted in the tool bar and can be manually adjusted and secured in position with a screw, depending on the size of the hole being processed. The tool head can be installed perpendicular to the boring bar axis for through-hole boring or inclined for blind-hole boring. as only one main cutting edge is involved in the operation, the production efficiency is relatively low. Therefore, it is often used for single-piece or small-batch production.

When the nut is rotated, the spindle with the tool head can move in a straight line along the directional key, and the reading precision of the dial indicator can reach 0.001 millimeters.

What is a Cemented Carbide Boring Tool? 2

Double-edge Boring Tool

The double-edge boring tool has two symmetric cutting edges, allowing the radial forces during boring to cancel each other out. The size and accuracy of the workpiece hole are ensured by the radial dimension of the cemented carbide boring tool. The double-edge boring tool has two cutting teeth cutting simultaneously on both sides of the center, and the radial forces generated during cutting balance each other out, which allows for increased cutting amounts and higher production efficiency. Double-edge boring tools are further classified into floating boring tools and fixed boring tools, depending on whether the cutting blade floats on the boring bar. Floating boring tools are suitable for precision machining of holes and can produce highly accurate and smooth-surfaced holes, functioning similar to a reamer.

What is a Cemented Carbide Boring Tool? 3

Materials of Boring Tool Inserts

The boring tool inserts can be made from various materials, including cemented carbide, metal ceramics, ceramics, PCD (Polycrystalline Diamond), and PCBN (Polycrystalline Cubic Boron Nitride).

Cemented carbide boring tool inserts mostly utilize PVD (Physical Vapor Deposition) or CVD (Chemical Vapor Deposition) coatings. They are suitable for machining a wide range of materials, such as most steels, titanium alloys, cast iron, and non-ferrous metal alloys. They are also used for processing high-temperature alloys and austenitic stainless steels.

Ceramic inserts can be categorized into two main types: alumina-based (Al2O3) and silicon nitride-based (Si3N4). They are used for boring operations on alloy steels, tool steels, and martensitic stainless steels with a hardness greater than HRC60. Ceramic inserts are also employed for precision boring of hardened steels, cast iron (with a hardness of HRC45 or higher), nickel-based, and cobalt-based alloys.

Silicon nitride-based ceramic inserts come in coated and uncoated grades. They are used for boring operations on grey cast iron and nodular cast iron, as well as for high-temperature alloy machining.

Metal ceramics are composite materials consisting of titanium carbide or titanium carbonitride as the base material combined with metals such as nickel or cobalt as a binder. They exhibit good resistance to chip adhesion and plastic deformation, making them suitable for precision boring with stringent surface finish requirements. Metal ceramic inserts are used for high-speed precision and semi-precision boring of most carbon steels, alloy steels, and stainless steels. When machining grey cast iron and nodular cast iron, they also offer long tool life and good surface finish.

Polycrystalline Diamond (PCD) inserts have PCD cutting edges brazed onto a cemented carbide substrate. The cutting edges of PCD tools maintain sharpness for an extended period, making them suitable for high-speed cutting.

Polycrystalline Cubic Boron Nitride (PCBN) has a hardness second only to PCD. PCBN inserts are commonly used for precision boring of hardened steels, tool steels, high-speed steels (HRC45~60), grey-hard cast iron, and powder metallurgy materials. In high-speed machining, PCBN inserts can achieve longer tool life compared to other types of tool inserts when machining the same workpiece.

What is a Cemented Carbide Boring Tool? 4

The difference between a boring tool and a reamer

Boring Tool

Boring tools are generally equipped with a cylindrical shank, although some larger workpieces may use square shanks.

Boring tools often have cutting edges on both the radial and axial sides.

Boring operations are referenced to the rotation axis of the machine tool’s main spindle.

The chips produced during boring are continuous.

The precision of boring operations depends on the machine tool, and the surface finish depends on the skill level of the operator. Boring tools are commonly used for achieving high straightness requirements in hole machining.

Reamer

Reamers are mostly constructed with a working part and a shank. They only have radial cutting edges.

Reamers are positioned based on the hole itself.

Reamer chips are typically in the form of small chips or powdery particles that stick to the tool.

Reamers are used for hole machining with higher surface finish requirements and lower straightness requirements.

In summary, the key differences between a boring tool and a reamer lie in their structure, cutting edges, positioning reference, chip formation, and the types of hole machining they are commonly used for. Boring tools are more versatile for achieving precise straightness requirements in hole machining, while reamers are better suited for achieving high surface finish requirements in holes.

 

 

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wype?nienie jest wymagane, s? oznaczone symbolem *

天天免费的无码AV| 中文有码无码人妻在线看| 日本最新免费不卡一区二区三区| 亚洲激情无码视频| 国产精品一区二区日本欧美| 亚洲国产综合精品 在线 一区| 啊啊啊啊大鸡巴操我视频| 久久国产老熟女老女人| 开心五月播五月亚洲第一| 九九视频这里只有精品| 久久噜噜噜久久熟女精品| 一区二区在线不卡| 熟女菊蕾老妇俱乐部视频| 我要操日本女人的逼| 在线观看国产日韩欧美一区二区| 欠欠草免费在线视频| 3色w九九久久男人皇宫宕| 波多野结衣福利视频| 国产日本欧美激情| 日本一二区视频在线观看| 啊啊不要你那痛死爽死了直播一区| 国语自产免费精品视频在| 猛插女人小穴视频| 中日韩中文字幕无码一本| 97超视频免费在线观看| 亚洲av伦理一区二区三区久久| 色网女人日本逼欧美| 操美女干逼调教捆绑视频| 国内不卡的中文字幕一区| 色噜噜AV亚洲色一区二区| 少妇毛片一区二区三区免费视频| 波多野吉衣一区在线观看| 精品久久久久五月婷五月| 91久久高清国语自产拍| 美女被大屌操大骚逼| 日本一区二区三区高潮喷吹| 大黑屌爆操日本女人| 亚洲综合青青草原在线| 操批在线观看视频| 色男人天堂亚洲男人天堂| 日本av在线一区二区|