Transmisyjna mikroskopia elektronowa o wysokiej rozdzielczo?ci (HRTEM lub HREM) to kontrast fazowy (kontrast obrazów z mikroskopu elektronowego o wysokiej rozdzielczo?ci jest tworzony przez ró?nic? faz mi?dzy zsyntetyzowan? fal? rzutowan? a fal? ugi?t?. Nazywa si? to kontrastem fazowym). daje uporz?dkowanie atomowe wi?kszo?ci materia?ów krystalicznych.
High-resolution transmission electron microscopy began in the 1950s. In 1956, JWMenter directly observed parallel strips of 12 ? copper phthalocyanine with a resolution of 8 ? transmission electron microscope, and opened high-resolution electron microscopy. The door to surgery. In the early 1970s, in 1971, Iijima Chengman used a TEM with a resolution of 3.5 ? to capture the phase contrast image of Ti2Nb10O29, and directly observed the projection of the atomic group along the incident electron beam. At the same time, the research on high resolution image imaging theory and analysis technology has also made important progress. In the 1970s and 1980s, the electron microscope technology was continuously improved, and the resolution was greatly improved. Generally, the large TEM has been able to guarantee a crystal resolution of 1.44 ? and a dot resolution of 2 to 3 ?. HRTEM can not only observe the lattice fringe image reflecting the interplanar spacing, but also observe the structural image of the atom or group arrangement in the reaction crystal structure. Recently, Professor David A. Muller’s team at Cornell University in the United States used laminated imaging technology and an independently developed electron microscope pixel array detector to achieve a spatial resolution of 0.39 ? under low electron beam energy imaging conditions.
Obecnie transmisyjne mikroskopy elektronowe s? ogólnie zdolne do wykonywania HRTEM. Te transmisyjne mikroskopy elektronowe dziel? si? na dwa typy: wysokiej rozdzielczo?ci i analityczne. TEM o wysokiej rozdzielczo?ci jest wyposa?ony w nabiegunnik obiektywu o wysokiej rozdzielczo?ci i kombinacj? membrany, co sprawia, ?e k?t nachylenia sto?u próbki jest ma?y, co skutkuje mniejszym wspó?czynnikiem aberracji sferycznej obiektywu; podczas gdy analityczny TEM wymaga wi?kszej ilo?ci do ró?nych analiz. K?t nachylenia sto?u próbnego, dzi?ki czemu nabiegunnik obiektywu jest u?ywany inaczej ni? typ o wysokiej rozdzielczo?ci, co wp?ywa na rozdzielczo??. Ogólnie rzecz bior?c, TEM o wysokiej rozdzielczo?ci 200 kev ma rozdzielczo?? 1,9 ?, podczas gdy analityczny TEM 200 kev ma rozdzielczo?? 2,3 ?. Ale to nie ma wp?ywu na analityczny TEM rejestruj?cy obraz w wysokiej rozdzielczo?ci.
As shown in Fig. 1, the optical path diagram of the high-resolution electron microscopy imaging process, when an electron beam with a certain wavelength (λ) is incident on a crystal with a crystal plane spacing d, the Bragg condition (2dsin θ = λ) is satisfied, A diffracted wave is generated at an angle (2θ). This diffracted wave converges on the back focal plane of the objective lens to form a diffraction spot (in an electron microscope, a regular diffraction spot formed on the back focal plane is projected onto the phosphor screen, which is a so-called electron diffraction pattern). When the diffracted wave on the back focal plane continues to move forward, the diffracted wave is synthesized, an enlarged image (electron microscopic image) is formed on the image plane, and two or more large objective lens pupils can be inserted on the back focal plane. Wave interference imaging, called high-resolution electron microscopy, is called a high-resolution electron microscopic image (high-resolution microscopic image).
Jak wspomniano powy?ej, obraz mikroskopu elektronowego o wysokiej rozdzielczo?ci jest obrazem mikroskopowym z kontrastem fazowym utworzonym przez przepuszczenie przechodz?cej wi?zki p?aszczyzny ogniskowej soczewki obiektywu i kilku ugi?tych wi?zek przez ?renic? obiektywu, ze wzgl?du na ich spójno?? fazow?. Ze wzgl?du na ró?nic? w liczbie ugi?tych wi?zek uczestnicz?cych w obrazowaniu uzyskuje si? obrazy o wysokiej rozdzielczo?ci o ró?nych nazwach. Ze wzgl?du na ró?ne warunki dyfrakcji i grubo?? próbki, mikrofotografie elektronowe o wysokiej rozdzielczo?ci z ró?nymi informacjami strukturalnymi mo?na podzieli? na pi?? kategorii: pr??ki sieci, jednowymiarowe obrazy strukturalne, dwuwymiarowe obrazy sieci (obrazy pojedynczych komórek), dwuwymiarowe obraz struktury (obraz w skali atomowej: obraz struktury krystalicznej), obraz specjalny.
Pr??ki kratowe: Je?li wi?zka transmisyjna na tylnej p?aszczy?nie ogniskowej jest wybrana przez soczewk? obiektywu, a wi?zka dyfrakcyjna interferuje ze sob?, uzyskuje si? jednowymiarowy wzór pr??ków z okresow? zmian? intensywno?ci (jak pokazano za pomoc? czarnego trójk?ta na Rys. 2 (f)) Jest to ró?nica mi?dzy pr??kiem sieciowym a obrazem sieciowym a obrazem strukturalnym, który nie wymaga, aby wi?zka elektronów by?a dok?adnie równoleg?a do p?aszczyzny sieciowej. W rzeczywisto?ci, podczas obserwacji krystalitów, osadów i tym podobnych, pr??ki sieci s? cz?sto uzyskiwane przez interferencj? mi?dzy fal? projekcyjn? a fal? dyfrakcyjn?. Je?li sfotografowany zostanie wzór dyfrakcji elektronów substancji takiej jak krystality, pojawi si? pier?cień kultu, jak pokazano na (a) na ryc. 2.
Jednowymiarowy obraz struktury: Je?li próbka ma pewne nachylenie, tak ?e wi?zka elektronów pada równolegle do pewnej p?aszczyzny kryszta?u kryszta?u, mo?e spe?ni? jednowymiarowy wzór dyfrakcji dyfrakcji pokazany na ryc. 2 (b) ( rozk?ad symetryczny wzgl?dem plamki transmisyjnej) Wzorzec dyfrakcyjny). W tym wzorze dyfrakcyjnym obraz o wysokiej rozdzielczo?ci wykonany w warunkach optymalnej ostro?ci ró?ni si? od obrze?a sieci, a obraz struktury jednowymiarowej zawiera informacje o strukturze krystalicznej, to znaczy uzyskany obraz struktury jednowymiarowej, jak pokazano na ryc. 3 (a Pokazano jednowymiarowy obraz strukturalny o wysokiej rozdzielczo?ci nadprzewodz?cego tlenku na bazie Bi.
Two-dimensional lattice image: If the electron beam is incident parallel to a certain crystal ribbon axis, a two-dimensional diffraction pattern can be obtained (two-dimensional symmetric distribution with respect to the central transmission spot, shown in Fig. 2(c)). For such an electron diffraction pattern. In the vicinity of the transmission spot, a diffraction wave reflecting the crystal unit cell appears. In the two-dimensional image generated by the interference between the diffracted wave and the transmitted wave, a two-dimensional lattice image showing the unit cell can be observed, and this image contains information on the unit cell scale. However, information that does not contain an atomic scale (into atomic arrangement), that is, a two-dimensional lattice image is a two-dimensional lattice image of single crystal silicon as shown in Fig. 3(d).
Two-dimensional structure image: A diffraction pattern as shown in Fig. 2(d) is obtained. When a high-resolution electron microscope image is observed with such a diffraction pattern, the more diffraction waves involved in imaging, the information contained in the high-resolution image is also The more. A high-resolution two-dimensional structure image of the Tl2Ba2CuO6 superconducting oxide is shown in Fig. 3(e). However, the diffraction of the high-wavelength side with higher resolution limit of the electron microscope is unlikely to participate in the imaging of the correct structure information, and becomes the background. Therefore, within the range allowed by the resolution. By imaging with as many diffracted waves as possible, it is possible to obtain an image containing the correct information of the arrangement of atoms within the unit cell. The structure image can only be observed in a thin region excited by the proportional relationship between the wave participating in imaging and the thickness of the sample.
Obraz specjalny: Na wzorze dyfrakcyjnym tylnej p?aszczyzny ogniskowej, wprowadzenie apertury wybiera tylko obrazowanie okre?lonej fali, aby móc obserwowa? obraz kontrastu okre?lonych informacji strukturalnych. Typowym tego przyk?adem jest uporz?dkowana struktura. Odpowiedni wzór dyfrakcji elektronów pokazano na Fig. 2(e) jako wzór dyfrakcji elektronów dla uporz?dkowanego stopu Au, Cd. Uporz?dkowana struktura oparta jest na sze?ciennej strukturze skoncentrowanej na twarzy, w której atomy Cd s? uporz?dkowane. Rys. 2(e) wzory dyfrakcji elektronów s? s?abe, z wyj?tkiem podstawowych odbi? sieciowych indeksów (020) i (008). Uporz?dkowane odbicie sieciowe, przy u?yciu obiektywu do wyodr?bnienia podstawowego odbicia sieci, przy u?yciu fal transmisyjnych i uporz?dkowanego obrazowania odbicia sieci, tylko atomy Cd z jasnymi punktami lub ciemnymi punktami, takimi jak wysoka rozdzielczo??, jak pokazano na rys. 4.
Jak pokazano na rys. 4, pokazany obraz o wysokiej rozdzielczo?ci zmienia si? wraz z grubo?ci? próbki w pobli?u optymalnego niedoogniskowania w wysokiej rozdzielczo?ci. Dlatego, gdy otrzymujemy obraz o wysokiej rozdzielczo?ci, nie mo?emy po prostu powiedzie?, czym jest obraz o wysokiej rozdzielczo?ci. Najpierw musimy przeprowadzi? symulacj? komputerow?, aby obliczy? struktur? materia?u przy ró?nych grubo?ciach. Obraz substancji w wysokiej rozdzielczo?ci. Seria obrazów o wysokiej rozdzielczo?ci obliczonych przez komputer jest porównywana z obrazami o wysokiej rozdzielczo?ci uzyskanymi w eksperymencie w celu okre?lenia obrazów o wysokiej rozdzielczo?ci uzyskanych w eksperymencie. Obraz symulacji komputerowej przedstawiony na rys. 5 porównano z obrazem o wysokiej rozdzielczo?ci uzyskanym w eksperymencie.
This article is organized by the material person column technology consultant.
Dodaj komentarz
Twój adres email nie zostanie opublikowany.