欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

Due to the “dual high” characteristics of high hardness and high toughness, the application scope of ultrafine-grained carbides has been expanding, leading to the development of tungsten carbide (WC), the main raw material for carbides, towards ultrafine particles. This is an undeniable fact. However, coarse-grained WC?possesses a series of advantages such as fewer microstructural defects, high microhardness, and low microscopic strain. As a result, it finds extensive applications in mining tools, petroleum drilling tools, engineering machinery, stamping dies, and hard surfacing technologies. In particular, its application in hard surfacing technology has rapidly developed in recent years, such as the production of pipe-type welding rods, electrodes, and spray welding powders using coarse-grained WC. Coarse-grained WC has been identified as a cost-effective wear-resistant hard surfacing material, which is of great significance in improving the efficiency of mechanical equipment and conserving metal materials.

The traditional method for producing coarse-grained WC?involves the following steps: WO? is reduced at high temperature to obtain coarse tungsten powder, which is then subjected to high-temperature carburization to produce coarse-grained WC. The WC produced by this process is approximately 22μm in size. This method has dominated the domestic industry for a long time.

How to Manufacture Coarse-Grained WC Using Activated Additive Method 2

Development of Production Methods

In the past decade, there have been continuous updates in the manufacturing methods of coarse-grained WC?powder, including:

method 1 for coarse-grained WC Powder

High-temperature carburization of medium or fine tungsten powder: This process can produce coarse WC grains with a particle size of 7-8μm.

method 2

MACEO (Microplasma-Assisted Chemical Etching of Oxygen) method: This process can produce extremely coarse WC powder with a sieve size larger than 40 mesh. However, it requires special treatment and impurity purification before being used for manufacturing carbides.

method 3

Cobalt-nickel carburization method: This process utilizes a small amount of cobalt and nickel to accelerate the carbide formation of tungsten particles and promote rapid growth of WC grains. With this mechanism, coarse-grained WC with a particle size of 22μm can be produced at relatively low temperatures.

method 4

Classification of coarse-grained WC powder: This method involves using techniques such as cyclone separation, fluidized bed classification, liquid elutriation, or sieving to separate large particles containing W?C and free carbon from WC. This not only narrows the particle size distribution range but also improves the quality of WC powder by increasing the compound carbon content and reducing the free carbon content.

As the application scope of coarse-grained WC?continues to expand, the demand for coarse carbide with a particle size larger than 22μm cannot be met. Therefore, it becomes necessary to develop new coarse-grained WC?products with a particle size greater than 30μm. After several years of exploration, we have successfully experimented with the additive method to produce coarse-grained WC?powder with a particle size larger than 30μm. This method has the advantages of a simple and feasible process, easy operation, utilization of existing production lines without the need for additional equipment, low process temperatures that save energy and prolong the lifespan of process equipment, and high purity of the produced product with no residual additives. The particle crystallization is intact, and the particle size distribution is uniform, consistent with the normal production of WC for carbides.

How to Manufacture Coarse-Grained WC Using Activated Additive Method 3

Experimental Method and Results

How to Manufacture Coarse-Grained WC Using Activated Additive Method 4

The experiment utilized blue tungsten oxide, produced by our factory, as the raw material. After uniformly adding the additive, it was subjected to continuous hydrogen reduction in a furnace at temperatures ranging from 900 to 1100°C, resulting in the production of tungsten powder (W). After carbonization with appropriate carbon content, the tungsten powder was further subjected to a one-hour carbonization process at around 2000°C in a continuous direct-heating carbon tube furnace. The coarse-grained WC?powder was obtained after ball milling and crushing.

The properties of the raw material, blue tungsten (W), are shown in Table 1. The properties of the intermediate product, tungsten powder (W), can be found in Table 2. The properties of the final product are presented in Table 3.

Using 1# WC with approximately 10% Co in the conventional process, the performance of the produced carbide?is as follows: strength of 2560 N/mm2, hardness of 86.5 (HRA), density of 14.42 g/cm3, magnetic flux density of 5300 A/m2, and WC grain size of 3.5 μm.

 

Analysis of Experimental Results

The above experimental results demonstrate that the additive used in the reduction and carbide formation processes of tungsten significantly increases the grain size of tungsten powder and tungsten carbide particles. As a result, various physical properties of tungsten powder and tungsten carbide powder undergo significant changes.

How to Manufacture Coarse-Grained WC Using Activated Additive Method 5

Compared to products without the additive, the addition of the additive can increase the particle size of tungsten powder by 3.5 to 4.5 times and the particle size of tungsten carbide powder by 2.5 to 3.0 times. Within the scope of the experiment, the process temperature has a significant influence on the particle size of tungsten powder and tungsten carbide. However, the variation in additive content does not have a significant impact on the particle size of tungsten powder and tungsten carbide powder.

coarse-grained WC

Preliminary Exploration of Activation Mechanism

The experimental results indicate that the additive promotes the growth of WC particles, mainly during the tungsten reduction stage. However, during the carbide formation process, the particle size of the product does not increase and, in fact, slightly decreases.

It is well known that the reduction of blue tungsten (primarily composed of WO?go) to tungsten powder undergoes several stages: WO?go → WO?n → WO? → W. During the WO?go → WO? stages, the product generally maintains the particle morphology of its precursor. However, during the WO? → W stage, almost all particles undergo a significant change in morphology and there is a considerable variation in particle size. This can be attributed to two main reasons: first, the solid-state phase transformation during the reduction process leads to particle fracture and refinement; second, the volatilization → reduction → deposition mechanism causes particle coarsening.

How to Manufacture Coarse-Grained WC Using Activated Additive Method 6

 

We believe that the presence of the additive not only enhances the volatilization → reduction → deposition process by creating an additional channel for the formation of WOxnReO(gas), but also suppresses particle fracture during certain solid-state phase transformations that occur during the reduction process. This further exacerbates the coarsening and refinement of intermediate reduction products. As a result, the additive increases the base number of tungsten powder particles that undergo growth and intensifies the cycle of re-oxidation → volatilization → reduction → deposition of fine tungsten powder particles. This is the mechanism by which the additive activates and promotes the growth of tungsten powder particles during the reduction process.

 

Summary and Current Issues In this study

it is observed that the carbide process conditions for tungsten powder described in the paper are not entirely optimal. As a result, some of the coarse particles in the final product of WC powder contain W?C inclusions in their cores, accounting for approximately 2.4% of the total particles, as shown in Figure 1. Therefore, further improvements are required in the carbide process to ensure its suitability for the production of carbides.

 

 

 

 

Dodaj komentarz

Twój adres email nie zostanie opublikowany. Pola, których wype?nienie jest wymagane, s? oznaczone symbolem *

九九热这里只有精品九九-欧美日韩人妻精品一二三| 亚洲综合av一区二区三区-高潮又爽又黄无遮挡激情视频| 亚洲区欧美区在线视频-亚洲碰碰人人AV熟女天堂| 天天干天天日天天射天天舔-精品香蕉视频官网在线观看| 国产欧美日本不卡精美视频-日本后入视频在线观看| 天天干天天干2018-91人妻人人澡人爽精品| 国产精品久久久精品一区-99久久免费精品国产男女性高好| 哦啊好大用力欧美视频-麻豆国产传媒片在线观看| 中文字幕亚洲综合久久最新-久久精品视频免费久久久| 欧美日韩国产在线资源-超碰成人国产一区二区三区| 三级a级一级大片在线观看-日韩av有码免费观看| 国产欧美日本不卡精美视频-日本后入视频在线观看| 国产精品电影在线一区-亚洲国产大片一区二区官网| 女主播啪啪大秀免费观看-精品99午夜福利影院| 男女做爰猛烈啪啪吃奶在线观看-人妻连裤丝袜中文字幕| 欧美字幕一区二区三区-好吊妞欧美一区二区在线观看| 在线视频成人一区二区-亚洲另类中文字幕在线| 韩漫一区二区在线观看-精品国产免费未成女一区二区三区| 日韩综合精品一区二区-丝袜美腿熟女人妻经典三级| 国产精品中出久久久蜜臀-久久久中国精品视频久久久| 91大神国内精品免费网站-亚洲免费电影一区二区| 九九热这里只有精品九九-欧美日韩人妻精品一二三| 熟女熟妇伦51788-国产av在线播放一区二区三区| 亚洲综合av一区二区三区-高潮又爽又黄无遮挡激情视频| 午夜日韩精品在线视频-亚洲网老鸭窝男人的天堂| 亚洲一区精品一区在线观看-日本久久久一区二区三区| 欧美亚洲另类久久久精品-国产精品一区二区亚洲推荐| 亚洲欧美日韩国产一区二区三区-国产欧美日韩一区二区免费| 国产欧美日本一区二区-一区二区三区亚洲在线播放| 国产综合日韩激情在线-日韩精品人妻一专区二区三区| 国产成人高清精品免费5388-好妞色妞在线视频播放| 日本高清二区视频久二区-大香蕉在线视频大香蕉在线视频| 美女把腿张开给帅哥桶-无码无套少妇18p在线直播| hd在线观看一区二区-免费一区二区三区毛片在线| 久久精品国产亚洲av湖南-竹菊精品一区二区三区| 亚洲美女喘息呻吟的网站-国产免费一区二区三区三洲| 色婷婷六月婷婷一区二区-91草草国产欧美在线观看| 亚洲av乱码一区二区-九九免费在线观看视频| 91麻豆免费在线视频-欧美中文天堂在线观看| 黄色美女网站大全中文字幕-欧美韩国日本一区二区| 国产欧美成人精品第一区-日本黄色精品一区二区|