欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

Sintering of carbide?is a crucial step in the production of carbide. During the pressing process of carbide?powder, the bonding between powder particles mainly relies on the pressure exerted during pressing, and the powder particles cannot bond with each other due to the lack of yield tension. The pressed compact exists in a porous state. Liquid phase sintering method of powder metallurgy is required for sintering. There are mainly several sintering methods for carbide: hydrogen sintering, vacuum sintering, low-pressure sintering, and hot isostatic pressing. The equipment also varies according to the different sintering processes and methods.

The State of Carbide Compact Formation

After the carbide?compact is formed, it exists in a porous state. During the wet grinding process, the shape of WC is subjected to strong impacts, resulting in increased surface energy and enhanced reactivity. The longer the contact time of the compact with air, the greater the degree of oxidation, requiring more carbon for reduction. With the theoretical carbon content of carbide?remaining at 6.128%, the ratio of oxygen atoms to carbon atoms is 12/16. Therefore, for every additional unit of oxygen, it will consume 3/4 of the carbon content. This leads to the formation of the η phase more easily after alloy sintering.

The Existence of Oxygen in Carbide Mixtures

The oxygen content in the carbide?mixture can be considered to exist in three forms: occluded oxygen, cobalt surface oxygen, and oxygen in WO2 or WO3. Since the oxygen content measured by chemical oxygen determination includes the total of these three types of oxygen, it is difficult to determine their respective proportions in production. Therefore, this poses challenges to production. Additionally, oxygen enrichment in the environment is ubiquitous, so it is essential to manage each process reasonably in actual production.

Occluded Oxygen

Exists in the interstices of the compact and on the surface of the compact and mixture; generally removed by vacuum evacuation at the beginning of sintering, so it does not affect alloy sintering.

Cobalt Surface Oxygen

Due to the high susceptibility of cobalt to oxidation at room temperature, oxidation intensifies with increasing temperature. After wet grinding and subsequent drying, a layer of oxide film forms on the cobalt surface; the longer the material or compact is stored before sintering, the higher the degree of cobalt oxidation. This portion of the oxide requires carbon for reduction; before the temperature reaches 600°C during sintering, reduction mainly relies on free carbon, and the remaining unreduced oxides must be reduced by combined carbon. This portion of oxygen is critical to the carbon-oxygen balance during alloy sintering and is difficult to control.

WO2 or WO3 Oxygen

Also known as compound oxygen; before the carbonization of WC, WO3 gradually transforms into WO2 and then into tungsten powder (W), followed by carbonization. Some oxides may remain incompletely reduced or partially oxidized due to storage time, from W → W2C → WC, and may persist even after completion. Alternatively, inadequate protection during storage may lead to oxidation. These oxide residues are referred to as compound oxygen; the reduction temperature generally occurs before 1000°C, but severe oxidation may delay reduction until 1200°C. This oxide residue consumes carbon significantly, narrowing the margin for carbon levels and making it difficult to control sintering carbon content, thereby complicating the achievement of sufficient liquid phase formation.

 

The Form of Carbon in carbide

The carbon content in carbide?mainly exists in three ways: WC stoichiometry, carbon increment from binder decomposition, and carbon infiltration from furnace gases.

Generally, WC is adjusted according to the theoretical carbon content of carbide; reasonable carbon adjustment is made based on small samples before wet grinding; in the wax process, the carbon content is adjusted by subtracting the amount of carbon infiltrated from furnace gases and adding the amount of carbon consumed by oxides. In the rubber process, one-third of the rubber weight should be subtracted.

Carbon Increment from Binder Decomposition

During debinding and sintering, whether using wax, PEG, or rubber, there is more or less decomposition; thus, carbide?can gain carbon, although the amount of carbon increase varies with different binders. Since wax mainly relies on evaporation, it is generally considered not to increase carbon content. On the other hand, rubber and PEG rely on decomposition, with rubber decomposition occurring at higher temperatures, resulting in more carbon increase.

carbide metal

Carbon Infiltration from Furnace Gases

Since most heating elements, insulation layers, sintering plates or boats in carbide?sintering furnaces are made of graphite products, their effects become evident at 600°C; when sintering temperature rises above 1200°C, a large amount of carbon and CO released from graphite exacerbate carbon infiltration into carbide.

Impact of Cobalt on carbide?Properties

Cobalt has a hexagonal close-packed crystal structure, making it highly reactive and prone to oxidation. In WC-Co alloys, cobalt acts as the binder metal. When the cobalt phase exhibits the ε-Co crystal structure, with fewer slip planes (theoretically no more than 3), the alloy’s toughness is low. However, when the cobalt phase exhibits the α-Co crystal structure, the maximum number of theoretical slip planes can increase to 12, resulting in stronger fracture resistance. With increasing sintering temperature, the cobalt crystal structure shifts from hexagonal close-packed to face-centered cubic; the reverse occurs during cooling. Since tungsten dissolves more in cobalt, playing a “nailing” role, the transformation of crystal structure during cooling varies with the amount of tungsten dissolved.

Up to 1% of cobalt can dissolve in WC at room temperature; when the sintering temperature reaches between 400°C and 800°C, vigorous diffusion and rearrangement of cobalt occur. During this period, a lower amount of free carbon is more conducive to increased slip planes; this is advantageous in wax processes. However, rubber processes require completion of decomposition around 600°C, affecting the effective occurrence of cobalt phase slip planes.

At 1000°C during sintering, the oxide has almost completed the reduction process, so this stage is referred to as oxygen-free sintering. Carbon content in carbide?is generally tested at this stage; however, the so-called oxygen-free carbon contains only a minimal amount of oxygen. Nonetheless, oxide on the cobalt surface has been completely reduced by this point, and the edges of the cobalt phase have produced fewer liquid phases. At this stage, the compact has acquired some hardness, known as the pre-sintering stage. Products at this stage can undergo plastic processing if necessary.

The Sintering Mechanism of?Carbide 2

Liquid Phase in Carbide

Theoretically, the liquid phase in WC-Co alloys appears at 1340°C. The temperature at which the liquid phase sufficiently appears varies with carbon content. As sintering temperature rises, the amount of liquid phase increases; fine WC particles gradually form a liquid phase. Intense shrinkage occurs in the product, reducing the distance between WC particles. Fine WC particles are gradually melted by larger particles, resulting in coarser WC particles. This phenomenon is known as grain growth. Grain growth during sintering is inevitable, particularly in ultrafine or submicron WC, where grain growth is more pronounced. To effectively inhibit excessive grain growth, inhibitors such as VC, TaC, and Cr3C2 can be added.

After sintering, undissolved WC and W2C rapidly precipitate, followed by ternary eutectic formation, laying the foundation for the alloy. The longer the cooling time above 1200°C, the more complete the precipitation, but the greater the opportunity for grain growth.

?? 3? ?? ????

??

The pursuit of ternary eutectic structures is the most critical aspect of sintering in WC-Co carbide. Ternary eutectic structures form the fundamental framework of carbide. In the W-C-Co ternary system, effective handling of WC grain growth, allowing more tungsten to dissolve in cobalt without decarburization, thereby improving the durability and toughness of carbide, is always the goal of alloy manufacturers. A German technical expert once said: “The essence of sintering lies in ‘high temperature and low carbon’.”

?? ???

???? ???? ????. ?? ???? * ? ???? ????

精品一区二区三区av在线-欧美黑人巨大精品一区二区| 性都花花世界亚洲综合-日韩av一区二区三区| 熟女少妇免费一区二区-麻豆一区二区三区免费在线观看| 欧美精品一区二区三区爽爽爽-日韩国产精品亚洲经典| 亚洲精品激情一区二区-久久成人国产欧美精品一区二区| 欧美精品一区二区三区爽爽爽-日韩国产精品亚洲经典| 俄罗斯胖老太太黄色特级片-国产精品黑丝美腿美臀| 国产在线一区二区三区欧美-久久偷拍精品视频久久| 国产午夜精品理论片A级漫画-久久精品国产99亚洲精品| 哦啊好大用力欧美视频-麻豆国产传媒片在线观看| 国产黄污网站在线观看-成人av电影中文字幕| 99在线观看精品视频免费-国产极品一区二区三区四区| 性激烈欧美三级在线播放-久久中文字幕人妻少妇| 青青操大香蕉在线播放-国产亚洲欧美精品在线观看| 免费看黄色污污的网站-欧美一区二区三区爽爽| 日本中文字幕永久在线人妻蜜臀-欧美一区二区的网站在线观看| 国产综合日韩激情在线-日韩精品人妻一专区二区三区| 亚洲av专区在线观看国产-丰满人妻av一区二区三区| 国产成人高清精品免费5388-好妞色妞在线视频播放| 精品一区二区三区av在线-欧美黑人巨大精品一区二区| 深夜三级福利在线播放-日韩精品一区二区在线天天狠天| 欧美精品啪啪人妻一区二区-嫩草人妻舔舔羞羞一区二区三区| 欧美黄色三级视频网站-国产九九热视频在线观看| 免费午夜福利在线观看-黄色日本黄色日本韩国黄色| 18禁真人在线无遮挡羞免费-中文字幕精品一区二区三区四区| 国产日韩电影一区二区三区-美女露双奶头无遮挡物| 中文字幕亚洲综合久久最新-久久精品视频免费久久久| 7m视频7m精品视频网站-亚洲综合香蕉视频在线| 国产aa视频一区二区三区-国产精品久久久久久久毛片动漫| 欧美mv日韩mv视频-熟妇人妻ⅴa精品中文| 黄色av网站在线免费观看-亚洲欧美精品偷拍tv| 日韩精品亚洲不卡一区二区-成人网在线视频精品一区二区三区| 欧美精品国产系列一二三国产真人-在线观看国产午夜视频| 欧美日本亚一级二级三区久久精品-日韩欧美一区二区久久婷婷| 国产一区二区无套内射-国内精品久久久久久久齐pp| 黄色美女网站大全中文字幕-欧美韩国日本一区二区| 性激烈欧美三级在线播放-久久中文字幕人妻少妇| 亚洲欧洲一区二区福利-亚洲欧美日韩高清中文| 欧美精品国产白浆久久正在-国产精彩视频一区二区三区| 一级特黄大片亚洲高清-国产精品视频伊人久久| 黄色美女网站大全中文字幕-欧美韩国日本一区二区|