{"id":21359,"date":"2022-08-29T10:53:30","date_gmt":"2022-08-29T02:53:30","guid":{"rendered":"https:\/\/www.meetyoucarbide.com\/?p=21359"},"modified":"2022-08-29T10:55:44","modified_gmt":"2022-08-29T02:55:44","slug":"why-is-youngs-modulus-almost-not-affected-by-the-3-factors-material-composition-microstructure-and-processing-state","status":"publish","type":"post","link":"https:\/\/www.meetyoucarbide.com\/ja\/%e3%81%aa%e3%81%9c%e3%83%a4%e3%83%b3%e3%82%b0%e7%8e%87%e3%81%af%e3%81%bb%e3%81%a8%e3%82%93%e3%81%a9%e5%bd%b1%e9%9f%bf%e3%82%92%e5%8f%97%e3%81%91%e3%81%aa%e3%81%84%e3%81%ae%e3%81%8b%e3%80%813%e3%81%a4\/","title":{"rendered":"\u30e4\u30f3\u30b0\u7387\u306f\u3001\u6750\u6599\u7d44\u6210\u3001\u7d44\u7e54\u3001\u52a0\u5de5\u72b6\u614b\u306e3\u3064\u306e\u8981\u56e0\u306e\u5f71\u97ff\u3092\u307b\u3068\u3093\u3069\u53d7\u3051\u306a\u3044\u306e\u306f\u306a\u305c\u3067\u3059\u304b?"},"content":{"rendered":"
\n

To know Young’s modulus well and answer this question on title bar, we need to think about how materials\u00a0get elasticity.<\/p>\n\n\n\n

\u91d1\u5c5e\u306e\u7269\u8cea\u306f\u3001\u305d\u306e\u5185\u90e8\u304c\u539f\u5b50\u3067\u69cb\u6210\u3055\u308c\u3066\u304a\u308a\u3001\u591a\u304f\u306e\u539f\u5b50\u304c\u898f\u5247\u7684\u306b\u914d\u5217\u3057\u3066\u7d50\u6676\u3092\u5f62\u6210\u3057\u3001\u591a\u304f\u306e\u7c92\u5b50\u304c\u7d50\u5408\u3057\u3066\u79c1\u305f\u3061\u304c\u666e\u6bb5\u76ee\u306b\u3059\u308b\u91d1\u5c5e\u3092\u5f62\u6210\u3057\u3066\u3044\u308b\u3053\u3068\u304c\u308f\u304b\u3063\u3066\u3044\u307e\u3059\u3002<\/p>\n\n\n\n

\u5f3e\u529b\u6027\u306f\u7c92\u5b50\u9593\u306e\u76f8\u4e92\u4f5c\u7528\u304b\u3089\u6765\u308b\u306e\u3067\u3059\u304b?\u5358\u7d50\u6676\u3082\u30a2\u30e2\u30eb\u30d5\u30a1\u30b9\u3082\u5f3e\u6027\u3092\u6301\u3063\u3066\u3044\u308b\u304b\u3089\u3067\u3059\u3002<\/p>\n\n\n\n

\u3057\u305f\u304c\u3063\u3066\u3001\u5f3e\u6027\u306f\u304a\u305d\u3089\u304f\u539f\u5b50\u9593\u306e\u76f8\u4e92\u4f5c\u7528\u306b\u7531\u6765\u3057\u307e\u3059\u3002<\/p>\n\n\n\n

In order to be as simple and convenient as possible, we try not to introduce complex concepts or mathematical formulas.\u00a0Let’s start with the\u00a0\u6700\u3082\u5358\u7d14\u306a\u4e8c\u539f\u5b50\u30e2\u30c7\u30eb<\/strong>.<\/p>\n\n\n\n

Diatomic model of Young’s modulus<\/h2>\n\n\n\n

2 \u539f\u5b50\u30e2\u30c7\u30eb: 2 \u3064\u306e\u539f\u5b50\u9593\u306e\u76f8\u4e92\u4f5c\u7528\u306f\u3001\u30dd\u30c6\u30f3\u30b7\u30e3\u30eb\u95a2\u6570 (\u8d64\u3044\u7dda) \u306b\u3088\u3063\u3066\u8a18\u8ff0\u3067\u304d\u307e\u3059\u3002\u6a2a\u8ef8\u306f 2 \u3064\u306e\u539f\u5b50\u9593\u306e\u8ddd\u96e2\u300cr\u300d\u3001\u7e26\u8ef8\u306f\u30dd\u30c6\u30f3\u30b7\u30e3\u30eb\u30a8\u30cd\u30eb\u30ae\u30fc U (r) \u3067\u3059\u3002\u76f8\u4e92\u4f5c\u7528\u529b\uff08\u7dd1\u7dda\uff09\u306f\u3001\u30dd\u30c6\u30f3\u30b7\u30e3\u30eb\u95a2\u6570\u3092\u5c0e\u51fa\u3059\u308b\u3053\u3068\u3067\u5f97\u3089\u308c\u307e\u3059\u3002 2 \u3064\u306e\u539f\u5b50\u306e\u9593\u306b r0r_ {0} \u3068\u3044\u3046\u5e73\u8861\u4f4d\u7f6e\u304c\u3042\u308a\u3001\u76f8\u4e92\u4f5c\u7528\u529b F = 0 \u3067\u3042\u308a\u3001\u30dd\u30c6\u30f3\u30b7\u30e3\u30eb \u30a8\u30cd\u30eb\u30ae\u30fc\u304c\u6700\u5c0f\u3067\u3042\u308b\u3053\u3068\u306f\u6ce8\u76ee\u306b\u5024\u3057\u307e\u3059\u3002\u3064\u307e\u308a\u3001\u3053\u306e\u4f4d\u7f6e\u304b\u3089\u96e2\u308c\u308b\u3068\u3001\u5de6\u53f3\u3069\u3061\u3089\u306b\u50be\u3044\u3066\u3082\u5f15\u304d\u623b\u305d\u3046\u3068\u3059\u308b\u529b\u304c\u50cd\u304d\u307e\u3059\u3002<\/p>\n\n\n\n

\u30d0\u30cd\u306e\u3088\u3046\u306b\u3001\u81ea\u7136\u306a\u72b6\u614b\u3067\u3053\u306e\u3088\u3046\u306a\u30d0\u30e9\u30f3\u30b9\u4f4d\u7f6e\u304c\u3042\u308a\u307e\u3059\u3002\u30b9\u30d7\u30ea\u30f3\u30b0\u3092\u63e1\u3063\u3066\u3082\u4f38\u3070\u3057\u3066\u3082\u3001\u624b\u3092\u96e2\u3059\u3068\u5143\u306e\u4f4d\u7f6e\u306b\u623b\u308a\u307e\u3059\u3002<\/p>\n\n\n\n

\u3053\u308c\u304c\u539f\u5b50\u30ec\u30d9\u30eb\u306e\u5f3e\u529b\u306e\u6e90\uff01<\/p>\n\n\n\n

\u3082\u3061\u308d\u3093\u3001\u5b9f\u969b\u306e\u91d1\u5c5e\u3084\u305d\u306e\u4ed6\u306e\u7269\u8cea\u306b\u306f\u591a\u304f\u306e\u539f\u5b50\u304c\u542b\u307e\u308c\u3066\u3044\u307e\u3059\u3002\u3053\u308c\u3089\u306e\u539f\u5b50\u76f8\u4e92\u4f5c\u7528\u306f\u3001\u4e00\u5bfe\u306e\u539f\u5b50\u76f8\u4e92\u4f5c\u7528\u306e\u91cd\u306d\u5408\u308f\u305b\u3068\u3057\u3066\u7c21\u5358\u306b\u7406\u89e3\u3067\u304d\u307e\u3059\u3002<\/p>\n\n\n\n

\"\"<\/figure>\n\n\n\n
\"\"<\/figure>\n\n\n\n

analysis of the relationship between Young’s modulus and other parameters <\/h2>\n\n\n\n

\u4e00\u822c\u306b\u3001\u3053\u306e\u6f5c\u5728\u7684\u306a\u95a2\u6570\u306f\u6b21\u306e\u5f62\u5f0f\u3092\u6301\u3064\u3068\u5358\u7d14\u306b\u4eee\u5b9a\u3067\u304d\u307e\u3059\u3002<\/p>\n\n\n\n

\"\"<\/figure>\n\n\n\n
\"\"
\u30ec\u30ca\u30fc\u30c9\u30fb\u30b8\u30e7\u30fc\u30f3\u30ba\u306e\u9759\u7684\u30a8\u30cd\u30eb\u30ae\u30fc<\/figcaption><\/figure>\n\n\n\n

\u4e0a\u8a18\u306e\u95a2\u6570\u306b\u306f\u3001\u5e73\u8861\u4f4d\u7f6e R0R_ \u3067\u3042\u308b 4 \u3064\u306e\u5909\u6570\u30d1\u30e9\u30e1\u30fc\u30bf\u30fc\u304c\u3042\u308a\u307e\u3059\u3002{0}<\/strong>\u3001\u7d50\u5408\u30a8\u30cd\u30eb\u30ae\u30fc U0U_{0}<\/strong>\u3001\u30d1\u30e9\u30e1\u30fc\u30bf N \u304a\u3088\u3073 M\u3002\u4e0a\u8a18\u306e\u30d1\u30e9\u30e1\u30fc\u30bf\u306f\u3001\u539f\u5b50\u306e\u7a2e\u985e\u306b\u3088\u3063\u3066\u7570\u306a\u308b\u5834\u5408\u304c\u3042\u308a\u307e\u3059\u3002<\/p>\n\n\n\n

\u3053\u3053\u3067\u3001\u3053\u308c\u3089 2 \u3064\u306e\u539f\u5b50\u3092\u72ec\u7acb\u3057\u305f\u30b7\u30b9\u30c6\u30e0\u3068\u3057\u3066\u53d6\u308a\u3001\u305d\u308c\u3089\u3092\u4f38\u3070\u3057\u305f\u308a\u5727\u7e2e\u3057\u305f\u308a\u3057\u307e\u3059\u3002<\/p>\n\n\n\n

\u5e73\u8861\u4f4d\u7f6e\u4ed8\u8fd1\u3067 2 \u3064\u306e\u539f\u5b50\u9593\u306e\u8ddd\u96e2\u3092\u5909\u3048\u308b\u305f\u3081\u306b\u3001\u52a0\u3048\u308b\u529b F<\/p>\n\n\n\n

\"\"<\/figure>\n\n\n\n

In order to correspond to Young’s modulus, we need to change it into \u03c3= E \u03b5 Form, divide by one r02r on both sides_ {0} ^ {2} and substituting the above formula and pretend to operate:<\/p>\n\n\n\n

\"\"<\/figure>\n\n\n\n
\"\"<\/figure>\n\n\n\n

\u7d50\u8ad6 <\/h2>\n\n\n\n

That is\u00a0to say, Young’s modulus E is mainly affected by N, m, u0u_ {0}\u3001r0r_ {0}. The atomic species and temperature can affect these parameters. The influence of different atomic species is obvious, and all parameters will change. The effect of temperature seems less obvious.<\/strong><\/p>\n\n\n\n

\u6e29\u5ea6\u306e\u5f71\u97ff\u3092\u89b3\u5bdf\u3059\u308b\u306b\u306f\u3001\u30dd\u30c6\u30f3\u30b7\u30e3\u30eb\u95a2\u6570\u66f2\u7dda\u81ea\u4f53\u306b\u623b\u308b\u5fc5\u8981\u304c\u3042\u308a\u307e\u3059\u3002\u30dd\u30c6\u30f3\u30b7\u30e3\u30eb\u95a2\u6570\u306f\u5b8c\u5168\u306a\u5bfe\u79f0\u66f2\u7dda\u3067\u306f\u306a\u3044\u305f\u3081\u3001\u6e29\u5ea6\u304c\u4e0a\u304c\u308b\u3068\u539f\u5b50\u306f\u3088\u308a\u6d3b\u767a\u306b\u52d5\u304d\u3001\u71b1\u81a8\u5f35\u3084\u51b7\u9593\u53ce\u7e2e\u306a\u3069\u306e\u53ef\u52d5\u57df\u304c\u5927\u304d\u304f\u306a\u308b\u3053\u3068\u3092\u610f\u5473\u3057\u307e\u3059\u3002\u3053\u306e\u3068\u304d\u3001\u30d0\u30e9\u30f3\u30b9\u4f4d\u7f6e r0r_{0} \u306f\u4e0b\u56f3\u7dd1\u7dda\u306e\u3088\u3046\u306b\u305a\u308c\u307e\u3059\u3002<\/strong><\/strong><\/p>\n\n\n\n

\"\"<\/figure>\n\n\n\n
\"\"
\u30c0\u30a4\u30ca\u30df\u30c3\u30af\u30d0\u30e9\u30f3\u30b9\u4f4d\u7f6e\u306e\u30aa\u30d5\u30bb\u30c3\u30c8<\/figcaption><\/figure>\n\n\n\n

It can be proved that atoms are always in motion. When the temperature is high, the equilibrium position r0r_ The larger {0}, the volume of the material increases and the young’s modulus decreases.<\/strong><\/strong><\/p>\n\n\n\n

Back to our initial question, the number of iron atoms in different grades of steel can account for more than 90%. Even compared with pure iron, the interaction force between atoms does not change greatly, so its young’s modulus is hardly affected by the change of alloy composition; Similarly, no matter the microstructure changes or work hardening, the rearrangement of atoms does not change the force between atoms, so they do not affect young’s modulus.<\/strong><\/strong><\/p>\n\n\n\n

In addition to Young’s modulus, physical quantities such as melting point, coefficient of thermal expansion and tensile strength of perfect crystal can also be derived from this model.<\/p>\n\n\n\n

As for the abnormal phenomenon that the young’s modulus of rubber in high elastic state increases with the increase of temperature, it is because the source of rubber elasticity is different from that of conventional materials.<\/p>\n<\/div>","protected":false},"excerpt":{"rendered":"

To know Young’s modulus well and answer this question on title bar, we need to think about how materials\u00a0get elasticity. For metal materials, we know that their interior is composed of atoms, many atoms are arranged regularly to form crystals, and many grains are combined together to form the metal we usually see. Does elasticity come from the interaction between grains? Obviously not, because both single crystal and amorphous have elasticity. Thus, elasticity probably comes from the interaction between atoms. In order to be as simple and convenient as possible, we try not to introduce complex concepts or mathematical formulas.\u00a0Let’s start with the\u00a0simplest diatomic model. Diatomic model of Young’s modulus…<\/p>","protected":false},"author":2,"featured_media":21370,"comment_status":"open","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"_jetpack_memberships_contains_paid_content":false,"footnotes":""},"categories":[79],"tags":[],"jetpack_featured_media_url":"https:\/\/www.meetyoucarbide.com\/wp-content\/uploads\/2022\/08\/\u56fe\u724711-1.png","jetpack_sharing_enabled":true,"_links":{"self":[{"href":"https:\/\/www.meetyoucarbide.com\/ja\/wp-json\/wp\/v2\/posts\/21359"}],"collection":[{"href":"https:\/\/www.meetyoucarbide.com\/ja\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/www.meetyoucarbide.com\/ja\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/ja\/wp-json\/wp\/v2\/users\/2"}],"replies":[{"embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/ja\/wp-json\/wp\/v2\/comments?post=21359"}],"version-history":[{"count":0,"href":"https:\/\/www.meetyoucarbide.com\/ja\/wp-json\/wp\/v2\/posts\/21359\/revisions"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/ja\/wp-json\/wp\/v2\/media\/21370"}],"wp:attachment":[{"href":"https:\/\/www.meetyoucarbide.com\/ja\/wp-json\/wp\/v2\/media?parent=21359"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/ja\/wp-json\/wp\/v2\/categories?post=21359"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/ja\/wp-json\/wp\/v2\/tags?post=21359"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}