亚洲一区二区三区中文字幕在线观看,中文字幕亚洲国产精品,激情综合色综合久久久久久 http://www.owweac.cn/ja 月, 19 9月 2022 01:39:36 +0000 毎時(shí) 1 https://wordpress.org/?v=6.5.5 http://www.owweac.cn/wp-content/uploads/2020/04/Meetyou-Carbide-Logo.svg 未分類 – Meetyou カーバイド http://www.owweac.cn/ja 32 32 209719448 極低溫処理プロセスについて知っておく必要がある 4 つの重要なポイント http://www.owweac.cn/ja/%e6%a5%b5%e4%bd%8e%e6%b8%a9%e5%87%a6%e7%90%86%e3%83%97%e3%83%ad%e3%82%bb%e3%82%b9%e3%81%ab%e3%81%a4%e3%81%84%e3%81%a6%e7%9f%a5%e3%81%a3%e3%81%a6%e3%81%8a%e3%81%8f%e3%81%b9%e3%81%8d-4-%e3%81%a4/ http://www.owweac.cn/ja/%e6%a5%b5%e4%bd%8e%e6%b8%a9%e5%87%a6%e7%90%86%e3%83%97%e3%83%ad%e3%82%bb%e3%82%b9%e3%81%ab%e3%81%a4%e3%81%84%e3%81%a6%e7%9f%a5%e3%81%a3%e3%81%a6%e3%81%8a%e3%81%8f%e3%81%b9%e3%81%8d-4-%e3%81%a4/#respond 月, 19 9月 2022 01:38:23 +0000 http://www.owweac.cn/?p=21406

1.極低溫処理プロセスの開発

Cryogenic treatment usually adopts liquid nitrogen cooling, which can cool the workpiece to below – 190 ℃. The microstructure of the treated material changes at low temperature, and some properties are improved. Cryogenic treatment was first proposed by the former Soviet Union in 1939. It was not until the 1960s that the United States applied the cryogenic treatment technology to the industry and began to use it mainly in the aviation field. In the 1970s, it expanded to the machinery manufacturing field.

冷卻方式の違いにより、液體方式と気體方式に分けられます。液體法とは、材料またはワークを液體窒素に直接浸してワークを液體窒素溫度まで冷卻し、ワークをこの溫度に一定時(shí)間保持した後、ワークを取り出して特定の溫度まで加熱することを意味します.このように昇溫?降溫速度を制御することは難しく、ワークへの熱影響が大きく、一般的にワークへのダメージが発生しやすいとされています。極低溫設(shè)備は液體窒素タンクなど比較的シンプルです。

2.極低溫処理のガス法

The gas principle is to cool by the gasification latent heat of liquid nitrogen (about 199.54kJ/kg) and the heat absorption of low-temperature nitrogen. The gas method can make the cryogenic temperature reach – 190 ℃, so that the cryogenic nitrogen can contact the materials. Through convection heat exchange, the nitrogen can be vaporized in the cryogenic box after being ejected from the nozzle. The workpiece can be cooled by the latent heat of gasification and the heat absorption of cryogenic nitrogen. By controlling the input of liquid nitrogen to control the cooling rate, the cryogenic treatment temperature can be automatically adjusted and accurately controlled, and the thermal shock effect is small, so is the possibility of cracking.

現(xiàn)在、ガス法はその応用において研究者によって広く認(rèn)識(shí)されており、その冷卻裝置は主に制御可能な溫度を備えたプログラム可能な極低溫ボックスです。極低溫処理は、鉄金屬、非鉄金屬、金屬合金、およびその他の材料の耐用年數(shù)、耐摩耗性、および寸法安定性を大幅に改善し、かなりの経済的利益と市場の見通しをもたらします。

超硬合金の極低溫技術(shù)は、1980 年代と 1990 年代に初めて報(bào)告されました。 機(jī)械技術(shù) 1981 年に日本の 現(xiàn)代の機(jī)械工場 1992 年に米國の は、極低溫処理後に超硬合金の性能が大幅に向上したことを報(bào)告しました。 1970 年代以降、海外での極低溫治療に関する研究は実り多いものでした。舊ソ連、米國、日本、その他の國では、極低溫処理を使用して工具や金型の耐用年數(shù)、ワークピースの耐摩耗性、寸法安定性を向上させることに成功しています。

極低溫処理プロセスについて知っておく必要がある 4 つの重要なポイント 2

3.極低溫処理のメカニズム強(qiáng)化

金屬相強(qiáng)化。

超硬合金中の Co は、fcc 結(jié)晶構(gòu)造 α 相 (fcc) と最密六方晶構(gòu)造 ε 相 (hcp) を持っています。 ε-Co比率 α-Coは摩擦係數(shù)が小さく、耐摩耗性に優(yōu)れています。 417 ℃以上 α 相の自由エネルギーが低いため、Co α 相の形態(tài)が存在する。 417℃以下 ε相の低自由エネルギー、高溫で安定相 α相から低自由エネルギーε相へ相転移。しかし、WC粒子とαにより、相中に固溶ヘテロ原子が存在するため、相転移に対する制約が大きくなり、α→εとなり、相変化抵抗が増加し、溫度が417℃を下回ると、α 相が完全に変換できなくなります。 εフェーズに。極低溫処理は大幅に増加させることができます α と ε 二相の自由エネルギー差、したがって、相変化の駆動(dòng)力 ε 相変化変數(shù)を増加させます。極低溫処理後の超硬合金では、溶解度の低下により Co に溶解していた一部の原子が化合物の形で析出し、Co マトリックスの硬質(zhì)相を増加させ、転位の移動(dòng)を妨げ、第 2 相を強(qiáng)化する役割を果たします。粒子。

表面殘留応力の強(qiáng)化。

極低溫処理後の研究は、表面の殘留圧縮応力が増加することを示しています。多くの研究者は、表面層に一定の値の殘留圧縮応力があれば、その耐用年數(shù)を大幅に改善できると考えています。焼結(jié)後の超硬合金の冷卻過程で、結(jié)合相のCoは引張応力を受け、WC粒子は圧縮応力を受けます。引張応力はCoに大きなダメージを與えます。したがって、一部の研究者は、深い冷卻によって引き起こされる表面圧縮応力の増加が、焼結(jié)後の冷卻プロセス中に結(jié)合相によって生成される引張応力を遅くするか、部分的に相殺するか、またはそれを調(diào)整することさえあると信じています。圧縮応力、マイクロクラックの発生を減らします。

その他の強(qiáng)化メカニズム

η 相粒子は WC 粒子とともにマトリックスをよりコンパクトで強(qiáng)固にし、η により、相の形成はマトリックス中の Co を消費(fèi)すると考えられています。結(jié)合相のCo含有量が減少すると、材料の全體的な熱伝導(dǎo)率が増加し、炭化物の粒子サイズと隣接度が増加すると、マトリックスの熱伝導(dǎo)率も増加します。熱伝導(dǎo)率の増加により、ツールとダイの先端の熱放散が速くなります。工具や金型の耐摩耗性と高溫硬度が向上します。極低溫処理後、Co の収縮と緻密化により、WC 粒子を保持する Co の確固たる役割が強(qiáng)化されると考える人もいます。物理學(xué)者は、深い冷卻が金屬の原子と分子の構(gòu)造を変えたと信じています。

4.極低溫処理を施したYG20冷間圧造型の事例

YG20 コールド ピア型枠極低溫処理の操作手順:

(1) 焼結(jié)冷間圧造用金型を極低溫処理爐に入れる。

(2) Start the cryogenic tempering integrated furnace, open the liquid nitrogen, reduce it to – 60 ℃ at a certain rate, and keep the temperature for 1h;

(3) Reduce to – 120 ℃ at a certain rate, and keep the temperature for 2h;

(4) Reduce the temperature to – 190 ℃ at a certain cooling rate, and keep the temperature for 4-8h;

(5) 保溫後、0.5℃/minで180℃まで4時(shí)間昇溫する。

(6) プログラム裝置が完成すると、自動(dòng)的に電源が切れ、室溫まで自然冷卻されます。

結(jié)論: 極低溫処理なしの YG20 冷間圧造ダイスと極低溫処理後の冷間圧造 Φ 3.8 炭素鋼スクリュー ロッドは、極低溫処理後の金型の耐用年數(shù)が、極低溫処理なしの金型よりも 15% 以上長いことを示しています。 .極低溫処理プロセスについて知っておく必要がある 4 つの重要なポイント 3

4 Key points you may need to know about Cryogenic Treatment Process 4
(a) YG20 極低溫処理前
(b) YG20 極低溫処理後

極低溫処理前と比較して、極低溫処理後の YG20 の面心立方コバルト (fcc) は大幅に減少し、ε- Co (hcp) の明らかな増加も耐摩耗性と超硬合金の総合特性。

5.極低溫処理プロセスの限界

米國の工具?金型メーカーの実用化実績によると、処理後の超硬インサートの壽命は2~8倍に伸び、処理後の超硬伸線ダイスのドレッシングサイクルは數(shù)週間から延長されます。數(shù)ヶ月に。 1990年代に入ると、超硬合金の極低溫技術(shù)に関する國內(nèi)研究が行われ、一定の研究成果が得られました。

一般に、超硬合金の極低溫処理技術(shù)に関する研究は現(xiàn)在のところあまり発展しておらず、體系化されておらず、得られた結(jié)論も一貫性がなく、研究者によるさらなる詳細(xì)な調(diào)査が必要です。既存の研究データによると、極低溫処理は主に超硬合金の耐摩耗性と耐用年數(shù)を改善しますが、物理的特性には明らかな影響はありません。

]]>
http://www.owweac.cn/ja/%e6%a5%b5%e4%bd%8e%e6%b8%a9%e5%87%a6%e7%90%86%e3%83%97%e3%83%ad%e3%82%bb%e3%82%b9%e3%81%ab%e3%81%a4%e3%81%84%e3%81%a6%e7%9f%a5%e3%81%a3%e3%81%a6%e3%81%8a%e3%81%8f%e3%81%b9%e3%81%8d-4-%e3%81%a4/feed/ 0 21406
9 つの一般的なエッジ半徑処理方法 http://www.owweac.cn/ja/9%e3%81%a4%e3%81%ae%e5%85%b1%e9%80%9a%e3%82%a8%e3%83%83%e3%82%b8%e5%8d%8a%e5%be%84%e5%87%a6%e7%90%86%e6%96%b9%e6%b3%95/ http://www.owweac.cn/ja/9%e3%81%a4%e3%81%ae%e5%85%b1%e9%80%9a%e3%82%a8%e3%83%83%e3%82%b8%e5%8d%8a%e5%be%84%e5%87%a6%e7%90%86%e6%96%b9%e6%b3%95/#respond 月, 19 9月 2022 00:52:44 +0000 http://www.owweac.cn/?p=21400

Edge radius processing is an indispensable process after fine grinding of CNC tools and before coating. The purpose is to make the cutting edge smooth and smooth, and extend the tool life. There are 9 methods of edge radius treatment of CNC tools introduced by Meetyou. Let’s get to know it.

マシニングセンターの切削工具のエッジラジアス処理とは、切削工具のレベリング、研磨、およびバリ取りのプロセスを指し、エッジのパッシベーション、チップ除去溝の研磨、およびコーティングの研磨を含みます。

1. 工具の物理的摩耗に対する耐性

切削プロセスでは、ツールの表面がワークピースによって徐々に消費(fèi)され、刃先が高溫高圧下で塑性変形しやすくなります。工具の不動(dòng)態(tài)化処理は、工具の剛性を向上させ、工具の切削性能の早期の損失を回避するのに役立ちます。

2. ワークの平滑性を維持

工具刃先のバリは工具摩耗の原因となり、加工面が粗くなります。不動(dòng)態(tài)化処理後、工具の刃先は非常に滑らかになり、それに応じて刃先の崩壊現(xiàn)象が減少し、ワークピースの表面仕上げも改善されます。

3. 便利な溝切りくず除去

工具溝を研磨すると、表面品質(zhì)と切りくず除去性能が向上します。溝の表面が滑らかであるほど、切りくず排出性が向上し、より安定した切削を?qū)g現(xiàn)できます。

不動(dòng)態(tài)化と研磨の後、CNC 工作機(jī)械のツールは表面に多くの小さな穴を殘します。これらの穴は、加工中により多くの切削液を吸収できるため、切削中に発生する熱が大幅に減少し、切削速度が大幅に向上します。

9 common Edge radius processing methods 5

9種類のエッジR加工方法

砥石刃先R法

これは、最も早く、最も広く使用されているパッシベーション技術(shù)です。

ナイロンブラシエッジラジアス方式

ナイロン素材のブラシホイールやブラシディスクに微粒子の研磨剤を塗布し、ブラシの高速回転でカッターを動(dòng)かす方法が一般的です。

サンドブラスト工法

乾式サンドブラストと濕式サンドブラストに分けられます。また、エッジ半徑処理の一般的な方法でもあります。ナイロンブラシ工法に比べ、エッジの均一性が高くなります。

9 common Edge radius processing methods 6

エッジラジアス加工の撹拌方法

この方法は、治療前にツール全體を研磨バケットに入れ、レーザーセンサーを通してツールの深さを位置決めして、治療の質(zhì)を確保することです。この工程の刃密度もナイロンブラシ方式よりも高いです。

電気化學(xué)機(jī)械エッジ半徑処理


これは、電解加工と機(jī)械研磨を組み合わせた複合プロセスです。まず電解バリ取りを行い、その後機(jī)械研磨により酸化皮膜を除去します。

レーザー法:レーザークラッディング技術(shù)をベースに開発されたパッシベーション技術(shù)です。レーザーによってブレード表面に高熱を発生させ、一部の材料を溶かし、ブレードを不動(dòng)態(tài)化する効果を達(dá)成できます。

振動(dòng)エッジR加工方法

 主処理裝置は、振動(dòng)テーブルとワークテーブルを含む。ブレードは、振動(dòng)體に接続された容器に入れられます。容器には研磨粒子が充填されています。砥粒とブレードが衝突を繰り返し、衝突によって刃先の微量物質(zhì)を除去し、刃先のパッシベーションを?qū)g現(xiàn)します。

磁気研磨法

This is a edge radius processing that applies a magnetic field in the direction perpendicular to the axis of the cylindrical surface of the workpiece, and adds magnetic abrasive between the magnetic field S and N poles. The magnetic abrasive will be adsorbed on the magnetic pole and the workpiece surface, and will be arranged into a flexible “abrasive brush” along the direction of the magnetic line of force. The cutter rotates and vibrates axially at the same time to remove the metal and burrs on the workpiece surface.

マイクロアブレシブウォータージェット技術(shù):加圧器とノズル徑の制御により液固の高エネルギージェットを形成し、被加工物に高速かつ繰り返し衝突させることで不動(dòng)態(tài)化処理を?qū)g現(xiàn)する、環(huán)境にやさしい新しい加工技術(shù)です。

]]>
http://www.owweac.cn/ja/9%e3%81%a4%e3%81%ae%e5%85%b1%e9%80%9a%e3%82%a8%e3%83%83%e3%82%b8%e5%8d%8a%e5%be%84%e5%87%a6%e7%90%86%e6%96%b9%e6%b3%95/feed/ 0 21400
金屬エッチングとは? http://www.owweac.cn/ja/what-is-metal-etching/ http://www.owweac.cn/ja/what-is-metal-etching/#respond 月, 07 3月 2022 01:05:48 +0000 http://www.owweac.cn/?p=21006

Etching is a technology that uses chemical strong acid corrosion, mechanical polishing or electrochemical electrolysis to treat the surface of objects. In addition to enhancing aesthetics, it also increases the added value of objects. From traditional metal processing to high-tech semiconductor manufacturing, they are all within the scope of application of etching technology.

金屬エッチングとは? 9

Metal etching is a technology to remove metal materials through chemical reaction or physical impact. Metal etching technology can be divided into wet etching and dry etching. Metal etching consists of a series of chemical processes. Different etchants have different corrosion characteristics and strength for different metal materials.

Metal etching, also known as photochemical etching, refers to the removal of the protective film of the metal etching area after exposure, plate making, development and contact with the chemical solution in the process of metal etching, so as to achieve dissolution corrosion, formation of bumps, or hollowing out. It was first used to manufacture printed concave convex plates such as copper plate and zinc plate. It is widely used to reduce the weight of instrument panel or process thin workpieces such as nameplate. Through the continuous improvement of technology and process equipment, etching technology has been applied to aviation, machinery, chemical industry and semiconductor manufacturing processes for the processing of precision metal etching products of electronic thin parts.

Types of etching technology

Wet etching:金屬エッチングとは? 10

Wet etching is to immerse the wafer into a suitable chemical solution or spray the chemical solution onto the wafer for quenching, and remove the atoms on the surface of the film through the chemical reaction between the solution and the etched object, so as to achieve the purpose of etching During wet etching, the reactants in the solution first diffuse through the stagnant boundary layer, and then reach the wafer surface to produce various products through chemical reactions. The products of etching chemical reaction are liquid or gas phase products, which are then diffused through the boundary layer and dissolved in the main solution. Wet etching will not only etch in the vertical direction, but also have the effect of horizontal etching.

Dry etching:金屬エッチングとは? 11

Dry etching is usually one of plasma etching or chemical etching. Due to different etching effects, the physical atoms of ions in the plasma, the chemical reaction of active free radicals and the surface atoms of devices (wafers), or the combination of the two, include the following contents:

physical etching: sputtering etching, ion beam etching

chemical etching: plasma etching

physicochemical composite etching: reactive ion etching (RIE)

Dry etching is a kind of anisotropic etching, which has good directivity, but the selectivity is worse than wet etching. In plasma etching, plasma is a partially dissociated gas, and gas molecules are dissociated into electrons, ions and other substances with high chemical activity. The biggest advantage of dry etching is “anisotropic etching”. However, the selectivity of dry etching is lower than that of wet etching. This is because the etching mechanism of dry etching is physical interaction; Therefore, the impact of ions can remove not only the etching film, but also the photoresist mask.

金屬エッチングとは? 12

Etching process

According to the type of metal, the etching process will be different, but the general etching process is as follows: metal etching plate → cleaning and degreasing → water washing → drying → film coating or silk screen printing ink → drying → exposure drawing → development → water washing and drying → etching → film stripping → drying → inspection → finished product packaging.

1. Cleaning process before metal etching:

The process before etching stainless steel or other metals is cleaning treatment, which is mainly used to remove dirt, dust, oil stains, etc. on the material surface. The cleaning process is the key to ensure that the subsequent film or screen printing ink has good adhesion to the metal surface. Therefore, the oil stain and oxide film on the metal etching surface must be completely removed. Degreasing shall be determined according to the oil stain of the workpiece. It is best to degrease the silk screen printing ink before electric degreasing to ensure the degreasing effect. In addition to the oxide film, the best etching solution shall be selected according to the type of metal and film thickness to ensure surface cleanliness. It must be dry before screen printing. If there is moisture.

2. Paste dry film or silk screen photosensitive adhesive layer:

According to the actual product material, thickness and the exact width of the figure, it is determined to use dry film or wet film silk screen printing. For products with different thicknesses, factors such as the etching processing time required for product graphics should be considered when applying the photosensitive layer. It can make a thicker or thinner photosensitive adhesive layer with good coverage performance and high definition of patterns produced by metal etching.

3. Drying:

After the completion of film or roll screen printing ink, the photosensitive adhesive layer needs to be thoroughly dried to prepare for the exposure process. At the same time, ensure that the surface is clean and free of adhesion, impurities, etc.

4. Exposure:

This process is an important process of metal etching, and the exposure energy will be considered according to the thickness and accuracy of the product material. This is also the embodiment of the technical ability of etching enterprises. The exposure process determines whether the etching can ensure better dimensional control accuracy and other requirements.

5. Development:

After the photosensitive adhesive layer on the surface of the metal etching plate is exposed, the pattern adhesive layer is cured after exposure. Then, the unwanted part of the pattern, that is, the part that needs corrosion, is exposed. The development process also determines whether the final size of the product can meet the requirements. This process will completely remove the unnecessary photosensitive adhesive layer on the product.

金屬エッチングとは? 13

6. Etching or etching process:

After the product prefabrication process is completed, the chemical solution will be etched. This process determines whether the final product is qualified. This process involves etching solution concentration, temperature, pressure, speed and other parameters. The quality of the product needs to be determined by these parameters.

7. Removal:

The surface of the etched product is still covered with a layer of photosensitive adhesive, and the photosensitive adhesive layer on the surface of the etched product needs to be removed. Because the photosensitive adhesive layer is acidic, it is mostly expanded by acid-base neutralization method. After overflow cleaning and ultrasonic cleaning, remove the photosensitive adhesive layer on the surface to prevent photosensitive adhesive residue.

8. Test:

After the film is taken, the following is testing, packaging, and the final product is confirmed whether it meets its specifications.

Precautions in etching process

reduce side corrosion and protruding edges and improve metal etching processing coefficient: generally, the longer the printed board is in the metal etching solution, the more serious the side etching is. Undercutting seriously affects the accuracy of printed wire, and serious undercutting will not make thin wire. When the undercut and edge decrease, the etching coefficient increases. The high etching coefficient indicates that the thin line can be maintained and the etched line is close to the size of the original image. Whether the plating resist is tin lead alloy, tin, tin nickel alloy or nickel, the excessively protruding edge will lead to short circuit of the conductor. Because the protruding edge is easy to break, an electric bridge is formed between two points of the conductor.

improve the consistency of etching processing rate between plates: in continuous plate etching, the more consistent the metal etching processing rate, the more uniform etching plate can be obtained. In order to maintain the best etching state in the pre etching process, it is necessary to select an etching solution that is easy to regenerate and compensate and easy to control the etching rate. Select technologies and equipment that can provide constant operating conditions and automatically control various solution parameters. It can be realized by controlling the amount of copper dissolved, pH value, solution concentration, temperature, uniformity of solution flow, etc.

improve the uniformity of the metal etching processing speed of the whole plate surface: the etching uniformity of the upper and lower sides of the plate and each part of the plate surface is determined by the uniformity of the flow rate of the metal etching solution on the plate surface. In the etching process, the etching rates of the upper and lower plates are often inconsistent. The etching rate of the lower plate surface is higher than that of the upper plate surface. Due to the accumulation of solution on the surface of the upper plate, the etching reaction is weakened. The uneven etching of the upper and lower plates can be solved by adjusting the injection pressure of the upper and lower nozzles. The spray system and the oscillating nozzles can further improve the uniformity of the whole surface by making the spray pressure of the center and edge of the plate different.

Advantages of etching process

Because the metal etching process is etched by chemical solution.

maintain high consistency with raw materials. It does not change the properties, stress, hardness, tensile strength, yield strength and ductility of the material. The base processing process is etched in the equipment in an atomized state, and there is no obvious pressure on the surface.

no burrs. In the process of product processing, there is no pressing force in the whole process, and there will be no crimping, bumping and pressing points.

it can cooperate with the post process stamping to complete the personalized molding action of the product. The hanging point method can be used for full plate electroplating, bonding, electrophoresis, blackening, etc., which is more cost-effective.

it can also cope with miniaturization and diversification, short cycle and low cost.

Application field of etching processing

consumer electronics

filtration and separation technology

Aerospace

medical equipment

precision machinery

car

high end crafts

]]>
http://www.owweac.cn/ja/what-is-metal-etching/feed/ 0 21006
WCベースの複合材料の主要な種類に関する現(xiàn)在の研究 http://www.owweac.cn/ja/%e3%83%88%e3%82%a4%e3%83%ac%e3%83%99%e3%83%bc%e3%82%b9%e3%81%ae%e8%a4%87%e5%90%88%e6%9d%90%e3%81%ae%e4%b8%bb%e3%81%aa%e7%a8%ae%e9%a1%9e%e3%81%ab%e9%96%a2%e3%81%99%e3%82%8b%e7%8f%be%e5%9c%a8%e3%81%ae/ 水, 29 4月 2020 08:55:28 +0000 http://www.owweac.cn/?p=13993

超硬合金は、超硬合金と結(jié)合金屬の硬質(zhì)化合物から粉末冶金プロセスによって作られる一種の超硬合金です。硬度?強(qiáng)度に優(yōu)れ、多くの分野で使用されています。超硬合金材料の高溫性能と耐食性の要件がますます高くなるにつれて、既存の超硬合金材料の性能はその使用要件を満たすことが困難です。過去30年間、多くの學(xué)者がWCベースの化合物の実験的研究を?qū)g施し、一連の研究結(jié)果を得ています。

トイレメタル

WC-Co

炭化タングステンで広く使用されているセメント系材料はコバルトです。 WC Coシステムは広く研究されてきました。 COの添加により、WCの濡れ性と密著性が向上します。また、図13.2に示すように、COの添加により強(qiáng)度と靭性を大幅に向上させることもできます。

Present Research on Main Kinds of WC-based Composites 14
Present Research on Main Kinds of WC-based Composites 15

図13.3 WC Co粉末の後方散亂電子顕微鏡寫真。外部および斷面構(gòu)造を示しています。(a)、(b)F8。 (c)、(d)M8; (E)、(f)C8。

彼は、F8、M8、およびC8粉末とそれらの研磨された斷面の後方散亂電子イメージングを?qū)g行しました。すべての粉末が典型的な球形であることが観察された。 F8粉末は微細(xì)な炭化物が密に蓄積しているのに対し、M8とC8粉末は比較的ルーズな蓄積構(gòu)造を示し、いくつかの細(xì)孔があります。研磨された部分では、すべてのサンプルに明らかな散亂現(xiàn)象が見られ、硬度と耐摩耗性はコバルト含有量に反比例します。ビッカース硬さ(HV)は1500?2000 HV30で変化し、破壊靭性は7?15 MPa M1 / 2の範(fàn)囲です。この大きな変化は、炭化物の組成、微細(xì)構(gòu)造、および化學(xué)純度の関數(shù)です。

一般的に、粒子徑が小さいほど硬度が高く、耐摩耗性に優(yōu)れています。 COの體積分率が高いほど、破壊靭性は高くなりますが、硬度と耐摩耗性は低くなります(Jia et al。、2007)。したがって、より良い性能を得るために、代わりに他のセメント系材料の使用を検討することは避けられません。

一方、上記の理由により、戦略的に科學(xué)的ではなく、価格動(dòng)向に影響を與えることは容易ではありません。さらに、WCとcoダストの組み合わせは、使い捨てよりも致命的であるため、気になります。

WC-Ni

ニッケルはコバルトよりも安価で入手が容易です。強(qiáng)靭性に優(yōu)れています。過酷な環(huán)境での腐食/酸化性能、高溫強(qiáng)度、耐摩耗性の向上に使用できます。 WC Co合金と比較して、材料の可塑性は低くなります。ニッケルはWCによく溶けるため、WC基板の接著剤として使用され、それらの間の強(qiáng)い結(jié)合をもたらします。

WC-Ag

Agの添加により、WCは一種の耐アーク性材料になります。過負(fù)荷電流の作用下で、WCはしばしばスイッチングデバイスに負(fù)荷がかかります。これは、後者のよく知られた電気的接觸抵抗(RC)に起因する可能性があります。 WC Ag複合材料の抵抗率はAg含有量の増加に伴って低下し、硬度はAg含有量の増加に伴って低下します。これは、WCとAgの硬度の大きな違いによるものです。さらに、粗いWC粒子は非常に低く、安定した接觸抵抗を持っています。

図13.4は、スイッチによって生成される平均電気接點(diǎn)抵抗(RC)を示しています

ほとんどの材料のRCは10回のスイッチングサイクル後に安定していることが観察されているため、異なる銀含有量とWC粒子サイズのサイクル11e50銀の接觸抵抗は、粒子サイズ4 mmのWCで50?55 wt%(體積比60%と64.6%)の間、および粒子サイズがWCの55-60 wt%(體積比64.6%と69%)の間0.8および1.5 mm。したがって、これは、Agマトリックスが完全に相互接続されている投資の初期構(gòu)成を決定します。固定部品の場合、接觸抵抗の1.5?4 mmのWC粒子サイズの減少が観察され、これも透過しきい値を示しています。

WC-Re

Present Research on Main Kinds of WC-based Composites 16

REは高溫硬度と良好な組み合わせをもたらすことができるため、WC Coより優(yōu)れた性能を得るために、科學(xué)者は炭化タングステンを使用してレニウムを強(qiáng)化しています。

図13.4サイクル11から50のWC基板の接觸抵抗に対する、さまざまなAg含有量とWC粒子サイズでの平均電気接觸抵抗の比率は、coまたはNiです。 WC coereの微細(xì)構(gòu)造特性(20% RE含有量)によれば、WC coereはCOに保持され、HCP構(gòu)造を形成し続け、合金の硬度を向上させたと説明されています。研究者らはWC Niの再強(qiáng)化も行い、同様の推論を見出した。その最高の硬度とWC Coの2倍の耐久性により、合金は競爭力のある工具部品の製造に使用されています。 WCとReパウダーをコールドプレスした後、特許取得済みのホットプレスプロセスを?qū)g行すると、2400 kg / mm?2を超えるHVが観察されました(WC-Coの場合は1700 kg / mm?2と比較)

WC金屬間化合物

WC-FeAl

過去數(shù)十年の間、セラミック接著剤としての金屬間化合物は人々の注目を集めてきました。アルミ化鉄は、優(yōu)れた耐酸化性と耐食性、低毒性、高硬度、優(yōu)れた耐摩耗性、高溫安定性、優(yōu)れた濡れ性を備えています。バインダーとしてWCに熱力學(xué)的に適しています。 WC FeAlとWC Coの硬度と破壊靭性は基本的に同じです。 WC Co合金の硬度と耐摩耗性は、従來のWC Co合金と同様です。粒徑を最適化できれば、従來のWC Coを置き換えることが可能であると考えることができます。さまざまなボールミルおよび/または乾燥プロセスで準(zhǔn)備されたWC FeAl混合粉末の粒徑分布曲線を図13.5に示します。図13.5の3つの曲線は、雙峰分布を示します。図13.5では、小さい粒子サイズの左のピークは、単一のWC粒子の左のピークに対応しています。大きい粒子サイズの正しいピーク値は、一部のWC粒子を含むFeAlフラグメントのピーク値に対応します。正しいピークが移動(dòng)した場合、左側(cè)のピークは粉砕および/または乾燥プロセスに依存しません。 DR粉末(急速乾燥用の溶媒としての脫水エタノール)の正しいピークは、他の2つの粉末の対応するピークにシフトします。

Present Research on Main Kinds of WC-based Composites 17

図13.5さまざまな粉末プロセスから調(diào)製されたWC-FeAl混合粉末の粒徑分布。

WC-セラミック

WC-MgO

Present Research on Main Kinds of WC-based Composites 18

WC-mgo複合材料は、WCマトリックスにMgO粒子を添加することで広く使用されています。これは硬度にほとんど影響せず、材料の靭性を大幅に向上させます。硬度は靭性に反比例しますが、この合金の場合、硬度低下が非常に小さいときに靭性が得られます。研究対象の材料に少量のVC、Cr3C2およびその他の結(jié)晶粒成長抑制剤を添加すると、焼結(jié)プロセスでの結(jié)晶粒成長を制御できるだけでなく、材料の機(jī)械的特性も改善できます。

WC-Al2O3

優(yōu)れた機(jī)械的および物理的特性のため、Al2O3はWCの補(bǔ)強(qiáng)材として使用され、その逆も同様です。

焼結(jié)溫度と保持時(shí)間は、WC-40vol% Al2O3複合材料の微細(xì)構(gòu)造と機(jī)械的特性に大きな影響を與えます。焼結(jié)溫度と保持時(shí)間の増加に伴い、相対密度と粒子サイズが増加します。同時(shí)に、高圧と破壊靭性の値が最初に増加し、次に減少します。亀裂経路の微細(xì)構(gòu)造は、亀裂のブリッジと亀裂のたわみの存在を明らかにします。 wc-40vol% Al 2O 3複合材料の主な強(qiáng)化メカニズムは、二次および橫方向の亀裂の生成です。別の研究によると、HVは約20e25gpa、破壊靭性は5e6mpa.m1 / 2です。

図13.6は、アルミナ含有量による硬度、破壊靭性、および橫方向破壊強(qiáng)度の変動(dòng)傾向を示しています。これらの値は、報(bào)告されている値(Mao et al。、2015)とはかなり異なることに注意してください。純粋なWCは最高の硬度と最低の破壊靭性を持っています。 Al2O3の添加により破壊靭性が向上しますが、純粋なアルミナの硬度は純粋なWCの硬度よりも低く、wc-al2o3複合材の硬度は低下します。図13.6のさまざまな結(jié)果は、機(jī)械的特性がアルミナの含有量だけでなく、さまざまな基板の製造プロセスやグレードにも依存することを示しています。 

WC研磨剤

WC cBN

CBNは硬度、熱安定性、鉄との反応活性に優(yōu)れているため、WC CoにCBNを添加すると、材料の耐摩耗性、硬度、機(jī)械的特性を向上させることができます。 CBNがWCマトリックスに強(qiáng)化されると、強(qiáng)力な接著が生成されます。さらに、CBN粒子の亀裂のたわみまたはブリッジングにより、より優(yōu)れた破壊靭性を得ることができます。 CBN添加のプロセスにおける2つの主な障害は、CBNからhBNへの変換と、BとNの間の強(qiáng)い共有結(jié)合であり、CBNと超硬合金の焼結(jié)能力が低くなります。

WCダイヤモンド

WCダイヤモンドは、優(yōu)れた破壊靭性、耐亀裂成長性、および反射耐性を備えています。この材料は、ダイヤモンドがグラファイトになるのを防ぐための熱力學(xué)的條件下でのみ製造できます。この材料の性能を改善するためのより多くの研究を通じて、私たちは非常に必要な巨大なコストギャップを埋めることができます。

]]>
13993
新しい焼入れ工程の紹介 http://www.owweac.cn/ja/%e6%96%b0%e7%84%bc%e5%85%a5%e3%82%8c%e6%b3%95%e3%81%ae%e5%b0%8e%e5%85%a5/ http://www.owweac.cn/ja/%e6%96%b0%e7%84%bc%e5%85%a5%e3%82%8c%e6%b3%95%e3%81%ae%e5%b0%8e%e5%85%a5/#respond 月, 06 11月 2017 06:36:35 +0000 https://www.mcctcarbide.com/introduction-of-new-quenching-process/

欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

introductionSteel is quenched by heating the steel to a temperature above the critical temperature Ac3 (hypo-eutectoid steel) or Ac1 (hypereutectoid steel), holding it for a period of time so as to be austenitized in whole or in part, and then cooled at a temperature greater than the critical cooling rate Rapid cooling to below the Ms (or Ms near the isothermal) martensitic (or bainite) heat treatment process. The solution treatment of materials such as aluminum alloys, copper alloys, titanium alloys, toughened glass, etc., or heat treatment processes with rapid cooling is also commonly referred to as quenching. Quenching is a common heat treatment process, mainly used to increase the hardness of the material. Usually from the quenching medium, can be divided into water quenching, oil quenching, organic quenching. With the development of science and technology, some new quenching processes have emerged.1 high-pressure air-cooled quenching methodWorkpieces in the strong inert gas flow quickly and evenly cooling, to prevent surface oxidation, to avoid cracking, reduce distortion, to ensure that the required hardness, mainly for tool steel quenching. This technology has recently progressed rapidly and the range of applications has also expanded considerably. At present, the vacuum gas quenching technology developed rapidly, and the negative pressure (<1 × 105 Pa) high flow rate gas cooling followed by gas cooling and high pressure (1 × 105 ~ 4 × 105 Pa) 10 × 105 Pa) air-cooled, ultra-high pressure (10 × 105 ~ 20 × 105 Pa) air-cooled and other new technologies not only greatly enhance the vacuum quenching ability of air-cooled, and quenched the workpiece surface brightness is good, small deformation, but also A high efficiency, energy saving, pollution-free and so on. The use of vacuum high-pressure gas-cooled quenching is the quenching and tempering of materials, the solution, aging, ion carburizing and carbonitriding of stainless steel and special alloys, as well as vacuum sintering, cooling and quenching after brazing. With 6 × 105 Pa high pressure nitrogen cooling quenching, the load can only be cooled loose, high-speed steel (W6Mo5Cr4V2) can be hardened to 70 ~ 100 mm, high alloy hot work die steel up to 25 ~ 100 mm, gold Cold work die steel (such as Cr12) up to 80 ~ 100 mm. When quenched with 10 × 10 5 Pa of high pressure nitrogen, the cooled load can be intensive, increasing the load density by about 30% to 40% over cooling of 6 × 10 5 Pa. When quenched with 20 × 10 5 Pa of ultra-high pressure nitrogen or a mixture of helium and nitrogen, the cooled loads are dense and can be bundled together. The density of 6 × 105 Pa nitrogen cooling 80% to 150%, can be cooled all high-speed steel, high alloy steel, hot work tool steel and Cr13% chromium steel and more alloy oil quenched steel, such as more Large-size 9Mn2V steel. Dual-chamber air-cooled quench furnaces with separate cooling chambers have better cooling capacity than the same type of single chamber furnaces. The 2 × 105 Pa nitrogen cooled double chamber furnace has the same cooling effect as the 4 × 105 Pa single chamber furnace. However, operating costs, low maintenance costs. As China’s basic materials industry (graphite, molybdenum, etc.) and ancillary components (motor) and other levels to be improved. Therefore, to improve the 6 × 105 Pa single-chamber high-pressure vacuum care while maintaining the development of dual-chamber pressure and high-pressure air-cooled quenching furnace more in line with China’s national conditions.Figure 1 high-pressure air-cooled vacuum furnace2 strong quenching methodConventional quenching is usually with oil, water or polymer solution cooling, and strong quenching rule with water or low concentrations of salt water. Strong quenching is characterized by extremely fast cooling, without having to worry about excessive distortion of steel and cracking. Conventional quench cooling to the quenching temperature, the steel surface tension or low stress state, and strong quenching in the middle of cooling, the workpiece heart is still in the hot state to stop cooling, so that the formation of surface compressive stress. Under the severe quenching condition, the supercooled austenite on the surface of the steel is subjected to compressive stress of 1200 MPa when the cooling rate of the martensitic transformation zone is higher than 30 ℃ / s, so that the yield strength of the steel after quenching is increased by at least 25%.Principle: Steel from austenitizing temperature quenching, the temperature difference between the surface and the heart will lead to internal stress. Phase change of the specific volume of phase change and phase change plastic will also cause additional phase transformation stress. If the thermal stress and phase transition stress superposition, that is, the overall stress exceeds the yield strength of the material will be plastic deformation occurs; if the stress exceeds the tensile strength of hot steel will form a quenching crack. During intensive quenching, the residual stress caused by the phase change plasticity and the residual stress increase due to the specific volume change of austenite-martensite transformation. In the intense cooling, the workpiece surface immediately cooled to the bath temperature, the heart temperature almost unchanged. Rapid cooling causes a high tensile stress that shrinks the surface layer and is balanced by the heart stress. The increase of temperature gradient increases the tensile stress caused by the initial martensitic transformation, while the increase of the martensite transformation start temperature Ms will cause the surface layer to expand due to the phase transition plasticity, the surface tensile stress will be significantly reduced and transformed into compressive stress, Surface compressive stress is proportional to the amount of surface martensite produced. This surface compressive stress determines whether the heart undergoes martensitic transformation under compressive conditions or, on further cooling, reverses the surface tensile stress. If the martensitic transformation of the heart volume expansion is large enough, and the surface martensite is very hard and brittle, it will make the surface layer due to stress reversal rupture. To this end, the steel surface should appear compressive stress and heart martensitic transformation should occur as late as possible.Strong quenching test and steel quenching performance: The strong quenching method has the advantage of forming compressive stress in the surface, reducing the risk of cracking and improve the hardness and strength. Surface formation of 100% martensite, the steel will be given the largest hardened layer, it can replace the more expensive steel carbon steel, a strong quenching can also promote uniform mechanical properties of steel and produce the smallest distortion of the workpiece . Parts after quenching, the service life under alternating load can be increased by an order of magnitude. [1]Figure 2 strong quenching crack formation probability and cooling rate relationship3 water-air mixture cooling methodBy adjusting the pressure of water and air and the distance between the atomizing nozzle and the surface of the workpiece, the cooling capacity of the water-air mixture can be varied and the cooling can be uniform. Production practice shows that the use of the law on the shape of complex carbon steel or alloy steel parts induction hardening surface hardening, which can effectively prevent the generation of quenching cracks.Figure 3 water-air mixture4 boiling water quenching methodUsing 100 ℃ boiling water cooling, can get a better hardening effect, for quenching or normalizing steel. At present, this technology has been successfully applied to the ductile iron quenching. Taking aluminum alloy as an example: According to the current heat treatment specifications for aluminum alloy forgings and forgings, the quenching water temperature is generally controlled below 60 ° C, the quenching water temperature is low, the cooling speed is high, and a large residual stress after quenching occurs. In the final machining, the internal stress is out of balance due to the inconsistency of the surface shape and size, resulting in the release of residual stress, resulting in deformed, bent, oval and other deformed parts of the machined part becoming irreversible final wastes with serious loss . For example: propeller, compressor blades and other aluminum alloy forging deformation after machining obvious, resulting in parts size tolerance. Quenching water temperature increased from room temperature (30-40 ℃) to boiling water (90-100 ℃) temperature, the average forging residual stress decreased by about 50%. [2]Figure 4 boiling water quenching diagram5 hot oil quenching methodThe use of hot quenching oil, so that the workpiece before further cooling at a temperature equal to or near the temperature of Ms point in order to minimize the temperature difference, can effectively prevent quenching the workpiece distortion and cracking. The small size of the alloy tool steel die cold 160 ~ 200 ℃ in hot oil quenching, can effectively reduce distortion and avoid cracking.Figure 5 hot oil quenching diagram6 Cryogenic treatment methodThe quenched workpiece is continuously cooled from room temperature to a lower temperature so that the retained austenite continues to be transformed into martensite, the purpose of which is to improve the hardness and abrasion resistance of the steel, improve the structural stability and the dimensional stability of the workpiece, and effectively Improve tool life.Cryogenic treatment is liquid nitrogen as a cooling medium for material processing methods. Cryogenic treatment technology was first applied to the wear tools, mold tool materials, and later extended to alloy steel, carbide, etc., using this method can change the internal structure of metal materials, thereby improving the mechanical properties and processing properties, which is currently One of the latest toughening processes. Cryogenic treatment (Cryogenictreatment), also known as ultra-low temperature treatment, generally refers to the material below -130 ℃ for processing to improve the overall performance of the material. As early as 100 years ago, people began to cold treatment applied to watch parts, found to improve the strength, wear resistance, dimensional stability and service life. Cryogenic treatment is a new technology developed on the basis of ordinary cold treatment in the 1960s. Compared with the conventional cold treatment, cryogenic treatment can further improve the mechanical properties and stability of the material, and has a broader application prospect.Cryogenic treatment mechanism: After cryogenic treatment, the residual austenite in the internal structure of the metal material (mainly mold material) is transformed to martensite, and the precipitated carbide is also precipitated in the martensite, so that the martensite can be eliminated In the residual stress, but also enhance the martensite matrix, so its hardness and wear resistance also will increase. The reason for the increase in hardness is due to the transformation of part of the retained austenite into martensite. The increase in toughness is due to the dispersion and small η-Fe3C precipitation. At the same time, the carbon content of the martensite decreases and the lattice distortion decreases, Plasticity improvement.Cryogenic treatment equipment mainly consists of liquid nitrogen tank, liquid nitrogen transmission system, deep cold box and control system. In the application, cryogenic treatment is repeated several times. Typical processes such as: 1120 ℃ oil quenching + -196 ℃ × 1h (2-4) deep cryogenic treatment +200 ℃ × 2h tempering. After the treatment of the organization there has been the transformation of austenite, but also precipitated from the quenched martensite dispersion of highly coherent relationship with the matrix of ultrafine carbides, after subsequent low temperature tempering at 200 ℃, the growth of ultrafine carbides Dispersed ε carbides, the number and dispersion significantly increased. The cryogenic treatment is repeated a number of times. On the one hand, the superfine carbides are precipitated from the martensite transformed from the retained austenite at the time of the previous cryogenic cooling. On the other hand, fine carbides continue to be precipitated in the quenched martensite. Repeated process can make the matrix compressive strength, yield strength and impact toughness increased, improve the toughness of steel, while making the impact wear resistance was significantly improved.Figure 6 cryogenic treatment device schematicSome of the workpiece on the strict size requirements, does not allow processing due to thermal stress caused by excessive deformation, cryogenic treatment should be controlled cooling rate. In addition, in order to ensure the uniformity of the temperature field inside the equipment and reduce the temperature fluctuation, the design of the cryogenic treatment system should take into account the system temperature control accuracy and the rationality of the flow field arrangement. In the system design should also pay attention to meet the less energy consumption, high efficiency, easy operation and other requirements. These are the current development trend of cryogenic treatment system. In addition, some developing refrigeration systems whose refrigeration temperature extends from room temperature to low temperature are also expected to develop into liquid-free cryogenic treatment systems with the decrease of their minimum temperature and the improvement of refrigeration efficiency. [3]References:[1]樊東黎. 強(qiáng)烈淬火——一種新的強(qiáng)化鋼的熱處理方法[J]. 熱處理, 2005, 20(4): 1-3[2]宋微, 郝冬梅, 王成江. 沸水淬火對(duì)鋁合金鍛件組織與機(jī)械性能的影響[J]. 鋁加工, 2002, 25(2): 1-3[3]夏雨亮, 金滔, 湯珂. 深冷處理工藝及設(shè)備的發(fā)展現(xiàn)狀和展望[J]. 低溫與特氣, 2007, 25(1): 1-3
出典:Meeyou Carbide

]]>
http://www.owweac.cn/ja/%e6%96%b0%e7%84%bc%e5%85%a5%e3%82%8c%e6%b3%95%e3%81%ae%e5%b0%8e%e5%85%a5/feed/ 0 18551
分子線エピタキシー原理 http://www.owweac.cn/ja/%e5%88%86%e5%ad%90%e7%b7%9a%e3%82%a8%e3%83%94%e3%82%bf%e3%82%ad%e3%82%b7%e3%83%bc%e5%8e%9f%e7%90%86/ http://www.owweac.cn/ja/%e5%88%86%e5%ad%90%e7%b7%9a%e3%82%a8%e3%83%94%e3%82%bf%e3%82%ad%e3%82%b7%e3%83%bc%e5%8e%9f%e7%90%86/#respond 火曜日, 31 10月 2017 01:08:30 +0000 https://www.mcctcarbide.com/molecular-beam-epitaxy-principle/

まず、分子線エピタキシャルプロファイル超高真空環(huán)境では、結(jié)晶基板への1つ以上の分子(原子)ビームジェットの特定の熱エネルギーにより、基板表面の反応プロセス分子との衝突がほとんど発生しません。雰囲気ガス、基板への分子ビームの形で、エピタキシャル成長、それ故に名前。プロパティ:真空蒸著法起源:20世紀(jì)、70年代初頭、米國ベル研究所用途:エピタキシャル成長原子レベルの超精密制御薄い多層2次元構(gòu)造の材料とデバイス(スーパーキャラクター、量子井戸、変調(diào)ドーピングヘテロ接合、量子陰イオン:レーザー、高電子移動(dòng)度トランジスタなど)。他のプロセスと組み合わせるだけでなく、1次元および0次元のナノ材料(量子線、量子ドットなど)の準(zhǔn)備も行います。MBEの典型的な特徴:(1)ソース?fàn)tから放出される分子(原子)は「分子ビーム」ストリームの形の基板表面。水晶振動(dòng)子の膜厚モニタリングにより、成長速度を厳密に制御できます。(2)分子線エピタキシー成長速度は遅く、約0.01?1 nm / sです。単原子(分子)層のエピタキシーを?qū)g現(xiàn)し、優(yōu)れた膜厚制御性を?qū)g現(xiàn)します。(3)ソースと基板間のバッフルの開閉を調(diào)整することで、膜の組成と不純物濃度を厳密に制御でき、選択的エピタキシャル成長を?qū)g現(xiàn)できます。(4)非熱平衡成長、基板溫度を平衡溫度より低くして低溫成長を?qū)g現(xiàn)し、相互拡散と自己ドーピングを効果的に低減できます。(5)反射型高エネルギー電子回折(RHEED)およびその他のデバイスは、元の価格の観察、リアルタイムモニタリングを?qū)g現(xiàn)できます。成長速度は比較的遅く、両方のMBEが利點(diǎn)ですが、その欠如もあり、厚膜の成長や大量生産には適していません。 、シリコン分子線エピタキシー1基本プロファイルシリコン分子線エピタキシーには、均一エピタキシー、ヘテロエピタキシーが含まれます。シリコン分子線エピタキシーは、ケイ酸のエピタキシャル成長です。原子、分子、またはイオンの物理的堆積によって適切に加熱されたシリコン基板上の(またはシリコン関連の材料)(1)エピタキシャル期間中、基板の溫度はより低い(2)同時(shí)ドーピング(3)高真空を維持するシステム(4)アトミッククリーン表面に特に注意を払う図1シリコンMBE2の動(dòng)作原理の概略図シリコン分子線エピタキシーの開発履歴CVD欠陥に関連して開発CVD欠陥:基板高溫、1050oC、深刻なドーピングに(高溫で)。元の分子線エピタキシー:適切な溫度に加熱されたシリコン基板、シリコン基板へのシリコンの真空蒸著、エピタキシャル成長成長基準(zhǔn):入射分子は基板の高溫表面に十分に移動(dòng)し、単結(jié)晶。3シリコン分子線エピタキシーの重要性シリコンMBEは、厳密に制御された極低溫システムで実行されます。(1)は、不純物濃度を適切に制御して、原子レベルに到達(dá)できます。アンドープ濃度は<3×1013 / cm3で制御されます。(2)エピタキシーは、欠陥のない最良の條件下で実行できます。(3)エピタキシャル層の厚さは、単一原子層の厚さ內(nèi)で制御できます。手動(dòng)で設(shè)計(jì)可能な數(shù)nm?數(shù)十nmの超格子エピタキシー、および新しい機(jī)能材料の優(yōu)れた性能の準(zhǔn)備(4)シリコンの均一エピタキシー、シリコンのヘテロエピタキシー4エピタキシャル成長裝置開発方向:信頼性、高パフォーマンスと汎用性短所:高価格、複雑、高運(yùn)用コストスコープ:シリコンMBE、化合物MBE、III-V MBE、金屬半導(dǎo)體MBEが開発中の場合に使用可能基本的な共通機(jī)能:(1)基本的な超高真空システム、エピタキシャルチャンバー、Nuosen加熱室;(2)分析手段、LEED、SIMS、Yang EEDなど;(3)注入チャンバー図2シリコン分子ビームエピタキシャルシステムの概略図(1)サーフの電子ビーム衝撃シリコンターゲットのエースにより、シリコン分子線の生成が容易になります。シリコン分子線が側(cè)面に放射されて悪影響が生じるのを防ぐには、大面積のスクリーンシールドとコリメーションが必要です。(2)シリコンカソードの加熱に対する抵抗は、強(qiáng)い分子線を生成できません。他のグラファイトシトラスポットには、 Si-C染色、最良の方法は、電子源を蒸著してシリコンソースを生成することです。シリコンMBE溫度の一部は高く、蒸発しやすいため、蒸発源のシリコン低蒸発圧力要件の溫度は高くなります。同時(shí)に、制御するビーム密度とスキャンパラメータ。シリコンの溶融ピットをシリコンロッドの真中にすることで、シリコンロッドは高純度の柑橘類になります。分子ビームの監(jiān)視にはいくつかの種類があります。(1)ビーム電流を監(jiān)視するために水晶がよく使用され、ビームのシールドと冷卻が適切であり、満たすことができます。結(jié)果と、しかしノイズは安定性に影響を與えます。數(shù)μm後、水晶振動(dòng)子はその直線性を失います。頻繁な交換、メインシステムはしばしば膨張し、機(jī)能しません。(2)小さなイオンテーブル、分子ビームフラックスを測定するのではなく、分子ビーム圧力を測定しました。標(biāo)準(zhǔn)を殘しているシステムコンポーネントへの堆積のため。(3)分子線を介した低エネルギー電子線、勵(lì)起蛍光によって検出された電子の使用。原子は勵(lì)起されてすぐに基底狀態(tài)に劣化し、UV蛍光を生成します。光學(xué)密度は、光學(xué)集束後のビーム密度に比例します。シリコンソースのフィードバック制御を行います。不適切:電子ビームを遮斷すると、ほとんどの赤外線蛍光とバックグラウンド放射により、信號(hào)対雑音比が不安定な範(fàn)囲まで悪化します。原子クラスのみを測定し、分子物質(zhì)を測定することはできません。(4)原子吸収スペクトル、ドープ原子のビーム密度を監(jiān)視します。斷続的なビーム電流により、SiおよびGaはそれぞれ251.6 nmおよび294.4 nmの光放射によって検出されました。原子ビームによるビームの吸収強(qiáng)度が原子ビーム密度に変換され、対応する比率が得られました。分子ビームエピタキシー(MBE)基板ベースは難しい點(diǎn)です。MBEはコールドウォールプロセス、つまりシリコン基板の加熱です1200℃まで、室溫までの環(huán)境。また、シリコンウエハーは均一な溫度を確保します。丘の抵抗の高融點(diǎn)金屬とグラファイトのカソード、輻射加熱の背面、および加熱部品全體は、真空コンポーネントの熱輻射を低減するために、液體窒素冷卻コンテナに取り付けられています?;澶蚧剀灓丹护凭护始訜幛虼_保します。自由な偏向は、二次注入ドーピング効果を高めることができます。
出典:Meeyou Carbide

]]>
http://www.owweac.cn/ja/%e5%88%86%e5%ad%90%e7%b7%9a%e3%82%a8%e3%83%94%e3%82%bf%e3%82%ad%e3%82%b7%e3%83%bc%e5%8e%9f%e7%90%86/feed/ 0 18552
最新の資料の概要(2017年10月) http://www.owweac.cn/ja/%e6%9c%80%e6%96%b0%e8%b3%87%e6%96%99%e6%a6%82%e8%a6%81-2017%e5%b9%b410%e6%9c%88/ http://www.owweac.cn/ja/%e6%9c%80%e6%96%b0%e8%b3%87%e6%96%99%e6%a6%82%e8%a6%81-2017%e5%b9%b410%e6%9c%88/#respond 火曜日, 24 10月 2017 01:40:04 +0000 https://www.mcctcarbide.com/the-latest-material-overview-october-2017/

1, Review of Organic Halide Perovskite – related Photoelectric PropertiesFigure 1 Spectral position and PL peakOrganic halide perovskites are widely used in optoelectronics research. Methyl ammonium and formamidine lead iodide as photovoltaics show excellent photoelectric properties and stimulate researchers’ enthusiasm for light-emitting devices and photodetectors. Recently, the University of Toronto Edward H. Sargent (Correspondent) team of organic metal halide perovskite optical and electrical properties of the material were studied. Outlines how material composition and form are associated with these attributes, and how these properties ultimately affect device performance. In addition, the team also analyzed different material properties of the perovskite materials, in particular the bandgap, mobility, diffusion length, carrier lifetime and trap density.The Electrical and Optical Properties of Organometal Halide Perovskites Relevant to Optoelectronic Performance(Adv.Mater.,2017,DOI: 10.1002/adma.201700764)2, Advanced Materials Overview: 2D optoelectronic applications of organic materials Figure 2 Several key steps in the application of two-dimensional organic materialsThe 2D material with atomic thin structure and photoelectron properties has attracted the interest of researchers in applying 2D materials to electronics and optoelectronics. In addition, as a two-dimensional material series of emerging areas, the organic nanostructure assembled into 2D form provides molecular diversity, flexibility, ease of processing, light weight, etc., for optoelectronic applications provides an exciting prospect. Recently, Tianjin University, Professor Hu Wenping, Ren Xiaochen assistant researcher (common newsletter) and others reviewed the application of organic two-dimensional materials in optoelectronic devices. Examples of materials include 2D, organic, crystalline, small molecules, polymers, self- Covalent organic skeleton. The application of 2D organic crystal fabrication and patterning technology is also discussed. Then the application of optoelectronic devices is introduced in detail, and the prospect of 2D material is briefly discussed.2D Organic Materials for Optoelectronic Applications(Adv.Mater.,2017,DOI: 10.1002/adma.201702415)3, Advanced Materials Review: 2D Ruddlesden-Popper Perovskite PhotonicsFigure 3 Schematic diagram of 3D and 2D perovskite structuresThe traditional 3D organic-inorganic halide perovskite has recently undergone unprecedented rapid development. However, their inherent instabilities in moisture, light and calories remain a key challenge before commercialization. In contrast, the emerging two-dimensional Ruddlesden-Popper perovskite has received increasing attention due to its environmental stability. However, 2D perovskite research has just started. Recently, the University of Fudan University, Liang Ziqi (Corresponding author) team published a review first introduced 2D perovskite and 3D control of a detailed comparison. And then discussed the two-dimensional perovskite organic interval cationic engineering. Next, quasi-two-dimensional perovskites between 3D and 2D perovskites were studied and compared. In addition, 2D perovskite unique exciton properties, electron-phonon coupling and polaron are also shown. Finally, a reasonable summary of the structure design, growth control and photophysics research of 2D perovskite in high performance electronic devices is presented.2D Ruddlesden–Popper Perovskites for Optoelectronics(Adv.Mater.,2017,DOI: 10.1002/adma.201703487)4, Science Advances Summary: Lead Halide Perovskite: Crystal-Liquid Binary, Phonon Glass Electronic Crystals and Great Polaron FormationFigure 4 CH3NH3PbX3 perovskite structureLead anodized perovskite has proven to be a high performance material in solar cells and light emitting devices. These materials are characterized by the expected coherent band transport of crystalline semiconductors, as well as the dielectric response and phonon dynamics of the liquid. This “crystal-liquid” duality means that lead halide perovskites belong to phonon glass electron crystals – a class of thermoelectric materials that are considered to be the most efficient. Recently, the University of Columbia Zhu Xiaoyang (communication author) team reviewed the crystal-liquid duality, the resulting dielectric response responsible for the formation and selection of carrier polaron, which causes perovskite with defect tolerance, moderate Of the carrier mobility and the combined performance of the radiation. Large polaron formation and phonon glass characteristics can also explain the significant reduction in carrier cooling rates in these materials.Lead halide perovskites: Crystal-liquid duality, phonon glass electron crystals, and large polaron formation(Sci. Adv.,2017,DOI:10.1126/sciadv.1701469)5, Progress in Polymer Science Review: Lithography of silicon-containing block copolymersFig.5 Melt phase diagram of diblock copolymerRecently, the National Tsinghua University Rong-Ming Ho (Correspondent) and others published a summary of the different methods through the preparation of ordered block copolymer (BCP) film the latest progress, focusing on the use of silicon-containing BCP as lithography applications. With the advantages of Si-containing blocks, these BCPs have smaller feature sizes due to their high resolution, large segregation intensity and high etch contrast. Considering that poly (dimethylsiloxane) (PDMS) has been extensively studied in Si-containing BCPs, the possibility of photolithography using PDCP-containing BCP has been demonstrated through previous and ongoing studies. Subsequent sections detail the main results of the DSA approach. The new trend of lithographic printing application and the application of photolithography nano – pattern using silicon – containing BCPs are also discussed. Finally, the conclusion and prospect of BCP lithography are introduced.Silicon-Containing Block Copolymers for Lithographic Applications(Prog. Polym. Sci.,2017,DOI:10.1016/j.progpolymsci.2017.10.002)6, Angewandte Chemie International Edition Overview: CH3NH3PbI3 perovskite solar cell theoretical studyFigure 6 Electronic density patternPower conversion efficiency (PCEs) of more than 22% of the hybridized perovskite perovskite solar cells (PSCs) has attracted considerable attention. Although perovskite plays an important role in the operation of PSCs, the basic theory associated with perovskite remains unresolved. Recently, Professor Xun Nining (Communication Author) of Xi’an University of Architecture and Technology, according to the first principle, evaluated the existing theory of structure and electronic properties, defects, ion diffusion and transfer current of CH3NH3PbI3 perovskite, and ion transport Influence on PSC Current – Voltage Curve Hysteresis. The moving current associated with the possible ferroelectricity is also discussed. And emphasizes the benefits, challenges and potential of perovskite for PSCs.Theoretical Treatment of CH3NH3PbI3 Perovskite Solar Cells(Angew. Chem. Int. Ed.,2017,DOI: 10.1002/anie.201702660)7, Chemical Society Reviews Overview: Reductive Batteries for Electromechanical Active Materials for Molecular EngineeringFigure 7 Molecular engineering for redox substances for sustainable RFBAs an important large energy storage system, redox batteries (RFBs) have high scalability and independent energy and power control capabilities. However, conventional RFB applications are subject to performance and limitations on high cost and environmental issues associated with the use of metal-based redox substances. Recently, the University of Texas at Austin Guihua Yu (communication author) team proposed the design of these new redox substances system molecular engineering program. The article provides a detailed synthesis strategy for modifying organometallic and organometallic redox substances in terms of solubility, oxidation-reduction potential and molecular size. And then introduced recent advances covering the reaction mechanism of the redox species classified by its molecular structure, the specific functionalization methods and electrochemical properties. Finally, the author analyzes the future development direction and challenge of this emerging research field.Molecular engineering of organic electroactive materials for redox flow batteries (Chem.Soc.Rev.,2017,DOI: 10.1039/C7CS00569E)8, Chemical Society Reviews Overview: Atomic level for energy storage and conversion Non-layered nanomaterialsFigure 8 Atomic-grade layered and non-layered nanomaterialsSince the discovery of graphene, the two-dimensional nanomaterials with large atomic thickness and large lateral dimension are highly studied because of their high specific surface area, heterogeneous electronic structure and attractive physical and chemical properties. Recently, Wulonggong University Dushi University academician (communication author) team comprehensively summed up the atomic thickness of non-layered nano-materials preparation method, studied its heterogeneous electronic structure, the introduction of electronic structure operation strategy, and outlined its energy storage and conversion Applications, with particular emphasis on lithium-ion batteries, sodium ion batteries, oxygen, CO2 reduction, CO oxidation reaction. Finally, based on the current research progress, put forward the future direction – in practical application to enhance the performance and new features to explore.Atomically thin non-layered nanomaterials for energy storage and conversion (Chem.Soc.Rev.,2017,DOI:10.1039/C7CS00418D)9, Chemical Reviews Overview: Electrochemical Applications in the Synthesis of Heterocyclic StructuresFigure 9 Mechanism of electro-induced cationic chain reactionThe heterocycle is one of the largest organic compounds to date, and the preparation and transformation of heterocyclic structures have been of great interest to organic chemistry researchers. Various heterocyclic structures are widely found in biologically active natural products, organic materials, agrochemicals and drugs. When people notice that about 70% of all drugs and agrochemicals have at least one heterocycle, people can not ignore them importance. Recently, Professor Zeng Chengchao of Beijing University of Technology (Correspondent Author) team reviewed the progress of electrochemical construction of heterocyclic compounds published by intramolecular and intermolecular cyclization since 2000.Use of Electrochemistry in the Synthesis of Heterocyclic Structures(Chem. Rev.,2017,DOI:10.1021/acs.chemrev.7b00271)
出典:Meeyou Carbide

]]>
http://www.owweac.cn/ja/%e6%9c%80%e6%96%b0%e8%b3%87%e6%96%99%e6%a6%82%e8%a6%81-2017%e5%b9%b410%e6%9c%88/feed/ 0 18528
核磁気共鳴の開発と原理 http://www.owweac.cn/ja/development-and-principles-of-nuclear-magnetic-resonance/ http://www.owweac.cn/ja/development-and-principles-of-nuclear-magnetic-resonance/#respond 水, 18 10月 2017 07:53:54 +0000 https://www.mcctcarbide.com/development-and-principles-of-nuclear-magnetic-resonance/

まず、簡単な歴史の発展最初の段階:1945年から1951年、核磁気共鳴の発明と期間の理論的および実験的基礎(chǔ)を築く:ブロック(スタンフォード大學(xué)、水プロトン信號(hào)で観察)およびパーセル(ハーバード大學(xué)、パラフィンプロトン信號(hào)で観察された)ノーベルボーナスを取得しました。第2段階:多くの重要な問題を解決するために、化學(xué)者や生物學(xué)者が認(rèn)めた、開発期間の1951年から1960年までの役割。 1953年は最初の30MHz核磁気共鳴分光計(jì)に登場しました。 1958年と60MHz、100MHzの楽器の出現(xiàn)の初期。 1950年代半ばに1H-NMR、19F-NMR、31P-NMRが開発されました。第3段階:60?70年、NMR技術(shù)の飛躍期。感度と分解能を向上させるためのパルスフーリエ変換技術(shù)は、13C核を日常的に測定できます。デュアル周波數(shù)およびマルチ周波數(shù)共振技術(shù);第4段階:1970年代後半の理論と技術(shù)開発が成熟しました.1,200、300、500 MHz、600 MHz超伝導(dǎo)NMR分光計(jì); 2、アプリケーションでのさまざまなパルスシリーズのアプリケーションが重要になります開発; 3、2D-NMRが登場; 4、マルチコア研究、すべての磁気コアに適用可能; 5、「核磁気共鳴イメージング技術(shù)」と他の新しい分岐分野が存在する。第2に、主な目的:1。構(gòu)造の決定と確認(rèn)。時(shí)には構(gòu)成とコンフォメーションを決定できる2?;衔锛兌葪蕱?、シンナーの感度、高感度ペーパークロマトグラフィー3。主信號(hào)などの混合分析は、分離せずにオーバーラップせず、混合物の割合を決定できます。プロトン交換、単結(jié)合の回転、環(huán)の変換、および推定速度のその他の化學(xué)変化1。核のスピンすべての元素の同位體のうち、核の約半分にはスピン運(yùn)動(dòng)があります。これらのスピン核は核磁気共鳴の対象です。スピン量子:核のスピン運(yùn)動(dòng)を表す量子數(shù)の數(shù)で、整數(shù)、半整數(shù)、ゼロのいずれかになります。有機(jī)化合物の構(gòu)成要素では、C、H、O、Nが最も重要な要素です。その同位體では、12C、16Oは非磁性であり、したがって核磁気共鳴を受けません。 1Hの天然存在量が大きく、磁性が強(qiáng)く、決定が容易であるため、NMR研究は主に陽子を?qū)澫螭趣筏皮い蓼筏俊?13Cの存在量は少なく、12C 1.1%のみで、信號(hào)感度は1/64を得るための陽子にすぎません。したがって、全體の感度は1Hの1/6000にすぎず、決定するのがより困難です。しかし、過去30年間で、核磁気共鳴裝置は大幅に改善され、13Cスペクトルで短時(shí)間に測定でき、より多くの情報(bào)を提供できるようになり、NMRの主な手段になりました。 1H、19F、31P球形の大きくて強(qiáng)い磁気および核電荷分布の自然存在量、最も決定が容易2。核磁気共鳴現(xiàn)象①歳差運(yùn)動(dòng):特定の磁気モーメントでスピンする外部磁場H0の作用下で、このコアは運(yùn)動(dòng)學(xué)的運(yùn)動(dòng)の角度を形成します。歳差運(yùn)動(dòng)速度は、H0(外部磁場強(qiáng)度)に比例します。②外部磁場配向での核スピン:外部磁場がない場合、スピン磁気配向はカオス的です。磁気コアは、(2I + 1)方向の外部磁場H0にあります。外部磁場での磁気コアのスピンは、重力場でのジャイロスコープの歳差運(yùn)動(dòng)(回內(nèi)、スイング)に類似している可能性があります。③核磁気共鳴の條件磁気共鳴磁場には、磁気核、外部磁場が必要ですそしてRF磁場。 RF磁場の周波數(shù)は、スピン核の歳差運(yùn)動(dòng)の周波數(shù)に等しく、共鳴は低エネルギー狀態(tài)から高エネルギー狀態(tài)に発生します。④核磁気共鳴現(xiàn)象:外部磁場H0の垂直方向回転磁場H1が歳差運(yùn)動(dòng)核に適用されます。 H1の回転周波數(shù)が核の回転歳差周波數(shù)に等しい場合、歳差運(yùn)動(dòng)核はH1からエネルギーを吸収し、低エネルギー狀態(tài)から高エネルギー狀態(tài)に遷移することができます。核磁気共鳴。飽和と緩和低エネルギー核は、高エネルギー核よりもわずか0.001%高いだけです。したがって、低エネルギー狀態(tài)のコアは常に高エネルギー核よりも多くなります。これは、そのような少しの余剰があり、電磁波の吸収を観察できるためです。電磁波の核の連続吸収、元の低エネルギー狀態(tài)が徐々に減少し、吸収信號(hào)の強(qiáng)度が弱まり、最終的に完全に消える場合、この現(xiàn)象は飽和と呼ばれます。飽和が発生すると、2つのスピン狀態(tài)のコアの數(shù)はまったく同じになります。外部磁場では、低エネルギー原子核は一般に高エネルギー狀態(tài)よりも核であり、電磁波エネルギーを吸収してコアの高エネルギー狀態(tài)に移行し、さまざまなエネルギー機(jī)構(gòu)によって放出されます。元の低エネルギー狀態(tài)に戻る、緩和と呼ばれるこのプロセス4。シールド効果–化學(xué)シフト①共鳴の理想的な狀態(tài)孤立した裸の原子核の場合、ΔE=(h /2π)γ?H;特定のH0の下では、原子核にはΔEΔE= Eの外側(cè)が1つしかない=hν吸収の唯一の周波數(shù)νのみH0 = 2.3500 T、100 MHzの1H吸収周波數(shù)、25.2 MHzの13C吸収周波數(shù)②実際のコア:シールド現(xiàn)象電子外部の核(分離されていない、露出されていない) 、靜電相互作用、分子間力想像:H0 = 2.3500 Tでは、シールドの外部電子により、核の位置では、実際の磁場は2.3500よりわずかに小さく、共振周波數(shù)は100 MHzよりわずかに高くなりますか? 1Hは0?10、13Cは0?250水素核は外部に電子を持ち、磁場の磁力線をはじく。原子核の場合、周囲の電子はシールド(シールド)効果です。コアの周りの電子雲(yún)の密度が大きいほど、シールド効果が大きくなり、それに対応して磁場強(qiáng)度が増加して共鳴します。原子核の周りの電子雲(yún)密度は、結(jié)合したグループの影響を受けるため、異なる化學(xué)環(huán)境の原子核は、異なるシールド効果の影響を受け、核磁気共鳴信號(hào)も異なる場所に現(xiàn)れます。③60 MHzまたは100MHzの楽器、有機(jī)化合物のプロトンの電磁波周波數(shù)は約1000Hzまたは1700Hzです。構(gòu)造を決定する際に、正しい共振周波數(shù)を決定する必要があり、通常は相対周波數(shù)を決定するための標(biāo)準(zhǔn)として適切な化合物を使用して、數(shù)Hzの精度が必要になることがよくあります。標(biāo)準(zhǔn)化合物の共鳴周波數(shù)とプロトンの共鳴周波數(shù)の差をケミカルシフトといいます。 H NMR分光情報(bào)信號(hào)の數(shù):分子內(nèi)に存在するプロトンの種類の數(shù)信號(hào)の位置:各プロトンの電子環(huán)境、化學(xué)シフト信號(hào)の強(qiáng)度:各プロトンの數(shù)または數(shù)スプリットの狀況:數(shù)異なるプロトンが存在する一般的なタイプの有機(jī)化合物の化學(xué)シフト①誘導(dǎo)効果②共役効果π電子の変位によるプロトン遮蔽により共役効果が弱いまたは増強(qiáng)されます③異方性効果π電子に対するHの化學(xué)シフトを説明することは困難です、および電気陰性度を説明することは困難です④Hキー効果ROH、0.5?5のRNH2、4?7のArOH、変化の範(fàn)囲、多くの要因の影響。溫度、溶媒、濃度変化による水素結(jié)合、水素結(jié)合に関連する構(gòu)造と変化を理解できます。⑤溶媒効果ベンゼンはDMFと複合體を形成します。ベンゼン環(huán)の電子雲(yún)は、DMFのプラス側(cè)を引き付け、マイナス側(cè)を拒否します。 αメチルはシールド領(lǐng)域にあり、共鳴は高磁場に移動(dòng)します。 βメチルがマスキング領(lǐng)域にあり、共鳴吸収が低磁場に移動(dòng)し、その結(jié)果、2つの吸収ピーク位置が入れ替わる。
出典:Meeyou Carbide

]]>
http://www.owweac.cn/ja/development-and-principles-of-nuclear-magnetic-resonance/feed/ 0 18529
レーザー粒度分布計(jì) http://www.owweac.cn/ja/laser-particle-size-analyzer/ http://www.owweac.cn/ja/laser-particle-size-analyzer/#respond 火曜日, 10 10月 2017 03:57:02 +0000 https://www.mcctcarbide.com/laser-particle-size-analyzer/

First, the basic concept of particle size analysis(1) particles: with a certain size and shape of small objects, is the basic unit of the composition of the powder. It is very small, but microscopic but contains a lot of molecules and atoms;(2) particle size: the size of particles;(3) particle size distribution: a certain way to reflect a series of different particle size particles, respectively, the percentage of the total powder;(4) the representation of the particle size distribution: table method (interval distribution and cumulative distribution), graphical method, function method, common R-R distribution, normal distribution;(5) particle size: the diameter of particles, usually in microns as a unit;(6) Equivalent particle size: When a particle of a physical properties and homogeneous spherical particles the same or similar, we use the spherical particles straightDiameter to represent the diameter of the actual particles;(7) D10, the cumulative distribution of 10% of the corresponding particle size; D50, the cumulative distribution of the percentage reached 50% of the corresponding particle size; also known as the median or median particle size; D90, the cumulative distribution of the percentage reached 90% of the corresponding particle size; D (4,3) volume or mass average particle size;Second, the commonly used particle size measurement method(1) sieving method(2) sedimentation method (gravity sedimentation method, centrifugal sedimentation method)(3) resistance method (Kurt particle counter)(4) Microscope (image) method(5) Electron microscopy(6) ultrasonic method(7) breathable method(8) laser diffraction methodAdvantages and disadvantages of various methodsSieve method: Advantages: simple, intuitive, low cost of equipment, commonly used in samples larger than 40μm. Disadvantages: can not be used for 40μm fine sample; results by human factors and sieve deformation of a greater impact.Microscope: Advantages: simple, intuitive, can be morphological analysis. Disadvantages: slow, poor representative, can not measure ultra-fine particles.Sedimentation method (including gravity settlement and centrifugal settlement): Advantages: easy to operate, the instrument can run continuously, low price, accuracy and repeatability is better, the test range is larger. Disadvantages: test time is longer.Resistance method: Advantages: easy to operate, the total number of particles can be measured, the equivalent concept clear, fast, good accuracy. Disadvantages: the test range is small, easy to be blocked by particles, the media should have strict electrical characteristics.Electron microscopy: Advantages: suitable for testing ultrafine particles or even nano-particles, high resolution. Disadvantages: less sample, poor representation, the instrument is expensive.Ultrasonic method: Advantages: direct measurement of high concentrations of pulp. Disadvantages: low resolution.Ventilation method: Advantages: instrument prices are low, do not have to disperse the sample, magnetic particles can be measured powder. Disadvantages: can only get the average particle size, can not measure the particle size distribution.Laser method: Advantages: easy to operate, fast test, test range, repeatability and accuracy, and can be measured online and dry. Disadvantages: the results affected by the distribution model, the higher the cost of the instrument.Third, the basic principle of laser particle size analyzerLaser diffraction technology began in the small angle scattering, so this technology also has the following name:Fraunhofer diffraction method(Approximately) positive light scattering methodSmall angle laser scattering method (LALLS)At present, this range of technology has been expanded to include light scattering within a wider range of angles, in addition to the approximate theory such as Fraunhofer diffraction and irregular diffraction, and the Mie theory is now used by instrument manufacturers Theory as one of the important advantages of its products.Mickey’s theory is named after a German scientist. It describes the uniform spherical particles in the uniform, non-absorbing medium and its surroundings in the space of the radiation, the particles can be completely transparent or can be completely absorbed. The Millerian theory describes that light scattering is a resonance phenomenon. If a specific wavelength of the beam encounters a particle, the particle produces an electromagnetic vibration at the same frequency as the emitted light source – irrespective of the wavelength of the light, the particle diameter, and the refractive index of the particles and the medium. The particles are tuned and received at a specific wavelength, and the energy is re-emitted within a particular spatial angular distribution as well as a relay. According to the Mie theory, it is possible to produce multiple oscillations of various probabilities, and there is a certain relationship between the cross section of the optical action and the particle size, the wavelength of light and the refractive index of the particles and the medium. If you use the Mie theory, you must know the refractive index and absorption coefficient of the sample and the medium.Fraunhofer theory is named after a German physicist, Franco and Fader, which is based on scattering at the edge of the grain and can only be applied to completely opaque particles and small angles of scattering. When the particle size is less than or equal to the wavelength, the Fraunhofer assumption that the extinction coefficient is constant is no longer applicable (it is an approximation of the Mie theory, that is, ignoring the Mi’s theory of imaginary subsets and ignoring the light scattering coefficient and Absorption coefficient, that is, all the dispersant and dispersive optical parameters are set to 1, the mathematical treatment is much simpler, the color of the material and small particles are also much larger error. The approximate Mickey theory is not applicable to the emulsion ).The laser particle size analyzer is based on the phenomenon of light diffraction, when the light through the particles when the diffraction phenomenon (its essence is the interaction of electromagnetic waves and substances). The angle of the diffracted light is inversely proportional to the size of the particle.Different sizes of particles through the laser beam when the diffraction light will fall in different positions, the location information reflects the particle size; the same large particles through the laser beam when the diffraction light will fall in the same position. The information of the diffracted light intensity reflects the percentage of particles of the same size in the sample.The laser diffraction method uses a series of photodetectors to measure the intensity of the diffracted light at different angles of the particle size of the particle, using the diffraction model, through the mathematical inversion, and then the particle size distribution of the sample.And the diffracted light intensity received by the position detector gives a percentage content of the corresponding particle size.The dependence of the intensity of the diffracted light on the particles decreases with the decrease of the particle size. When the particles are as small as several hundred nanometers, the diffraction intensity is almost completely dependent on the angle, that is, the diffracted light at this time Distributed in a wide range of angles, and the light intensity per unit area is very weak, which increases the difficulty of detection.The measurement of samples under 1um and wide particle size ranges (tens of nanometers to several thousand micrometers) is the key to the laser diffraction granulator. In general, the following techniques and optical path configurations are used:1, multi-lens technologyThe multi-lens system was widely adopted before the 1980s, using a Fourier optical path configuration, where the sample cell was placed in front of the focusing lens and equipped with a number of different focal lengths of the lens to accommodate different particle size ranges. The advantage is simple design, only need to be distributed in the tens of degrees range of focal plane detector, the cost is low. The disadvantage is that if the sample size is wide when the need to replace the lens, the results of different lenses need to be split, for some unknown particle size of the sample with a lens measurement may lose the signal or due to process changes caused by changes in sample size can not be timely reflect.2, multi-light technologyMulti-light source technology is also used in the Fourier optical path configuration that the sample cell in front of the focusing lens, generally only distributed in the range of tens of degrees angle detector, in order to increase the relative detection angle, so that the detector can receive small particles Diffracting the optical signal, and disposing the first or second laser at different angles relative to the optical axis of the first light source. The advantage of this technique is that it is only a detector that is distributed over several tens of degrees, and the cost is low. The measurement range, especially the upper limit, can be wide. The disadvantage is that the small area detector distributed in the small angle range is also used for small Particle measurement, due to the small particles of diffracted light in the unit area of the signal is weak, resulting in small particles when the signal to noise ratio is reduced, which is why the multi-light source system in the measurement range of more than 1500 microns or so, to ensure that a few microns The following small particles of accurate measurement, the need to replace the short focal length of the focus lens. In addition, the multi-lens system in the measurement of samples, the different lasers are turned on, and in the dry measurement, because the particles can only pass through the sample pool, only one light source can be used for measurement, so the general use of multi-lens technology The lower limit of the dry size is less than 250 nm.3, multi-method hybrid systemMulti-method hybrid system refers to the laser diffraction method and other methods of mixing design of the particle size analyzer, laser diffraction part of the distribution only a few tens of degrees range of the detector, and then supplemented by other methods such as PCS, generally a few microns The above is measured by laser diffraction, and particles below a few microns are measured by other methods. Theoretically, the lower limit of the particle size depends on the lower limit of the auxiliary method. The advantage of this method is that the cost is low and the overall measurement range is wide, The best measurement conditions required by the method, such as the concentration of the sample are not the same, are often difficult to balance, and in addition to the systematic error between the different methods, it is often difficult to obtain the desired result in the data fitting area of the two methods unless It is known that the particle size of the sample only falls within the range of the diffraction method or within the range of the auxiliary method. In addition, the multi-method mixing system requires two different sample cells, which is not a problem for wet measurement because the sample can be recycled, but the sample can only be circulated through the sample cell for a dry process, Method of simultaneous measurement, so a variety of methods mixed system in the dry measurement of the lower limit of the particle size can only be hundreds of nanometers.4, non-uniform cross-wide compensation for wide-angle detection technology and anti-Fourier optical systemThe wide-angle detection of non-uniform cross-wide area compensation and the anti-Fourier optical system are developed in the late 1990s. The anti-Fourier optical path configuration is used to place the cell behind the focusing lens, In a very wide range of angles, the general physical detection angle of up to 150 degrees, so that a single lens to measure tens of nanometers to several thousand microns of the sample possible, optical schematic diagram shown in the design of the detector On the use of non-uniform cross and with the increase in the size of the detector area also increased the arrangement, both to ensure that the resolution of large particles when the measurement also ensures a small particle detection signal to noise ratio and sensitivity. No need to replace the lens and other methods can be measured from tens of nanometers to several thousand microns of particles, even the dry measurement, the lower limit can reach 0.1 microns. The disadvantage of this approach is that the cost of the instrument is high relative to the previous methods.The laser beam emitted from the laser is focused by a microscope, pinhole filter and collimator collimation, into a parallel beam of about 10 mm in diameter, the beam is irradiated onto the particles to be measured, a portion of the light is scattered, Leaf lens, the radiation to the radio and television detector array. Since the radio and television detector is on the focal plane of the Fourier lens, any point on the detector corresponds to a certain scattering angle. The array of radio and television detectors consists of a series of concentric rings, each of which is a separate detector capable of linearly converting the scattered light projected onto the above into a voltage and then sending it to a data acquisition card which converts the electrical signal Zoom in, after the A / D switch to the computer.Now the actual structure of the laser particle size instrument has played a great change, but the same principle.At present, people have come to the following conclusions: (1) measuring less than 1mm of particles, you must use the Mie theory;(2) measuring more than 1mm particles, if the lower limit of measurement of the instrument is less than 3mm, the instrument still use the Mie theory, or in the particle size distribution of 1mm near the “out of nothing” a peak;(3) The laser particle size analyzer can use the diffraction theory of the conditions: the lower limit of measurement of the instrument is greater than 3mm, or the measured particles are absorbent type, and the particle size is greater than 1mm;(4) As a universal laser particle size analyzer, as long as the lower limit of measurement is less than 1mm, whether it is used to measure large particles or small particles, should use the Mie theory.Fifth, the composition of laser particle size analyzerA light source (usually a laser) is used to produce a monochromatic, coherent and parallel beam; the beam processing unit is a beam amplifier with an integrating filter that produces a beam of expanded, near-ideal light beams to illuminate the dispersed particles (A coherent strong light source with a fixed wavelength, a He-Ne gas laser (λ = 0.63um).Particle disperser (wet and dry)Measure the scattering spectrum of the detector (a large number of photodiodes)Computer (for controlling equipment and calculating particle size distribution)Through technological advances, the lower limit of measurement can be 0.1um, some up to 0.02umSix, test operation steps1, preparation of equipment to install and disperse the liquid (gas)2, sample inspection, preparation, dispersion and sample concentration check the particle size range and particle shape and whether the full dispersion;3, measurement (select the appropriate optical model)4, the error from the diagnostic system of measurement error (deviation), can come from the incorrect sample preparation, deviation from the theoretical assumptions of the particles and / or due to improper operation and operation of the instrument caused;Seven, commonly used laser particle size meter manufacturersBritish Malvern laser particle size analyzer (abroad)Europe and the United States grams of laser particle size analyzer (Zhuhai)Dandong laser particle size analyzer (Liaoning)Eight, the test object1. All kinds of non-metallic powder: such as tungsten, light calcium, talc, kaolin, graphite, wollastonite, brucite, barite, mica powder, bentonite, diatomaceous earth, clay and so on.2. All kinds of metal powder: such as aluminum powder, zinc powder, molybdenum powder, tungsten powder, magnesium powder, copper powder and rare earth metal powder, alloy powder.3. Other powder: such as catalyst, cement, abrasive, medicine, pesticide, food, paint, dyes, phosphor, river sediment, ceramic raw materials, various emulsions.
出典:Meeyou Carbide

]]>
http://www.owweac.cn/ja/laser-particle-size-analyzer/feed/ 0 18530
水を利用して光を放出する2次元フレキシブルディスプレイ http://www.owweac.cn/ja/%e6%b0%b4%e3%82%92%e5%88%a9%e7%94%a8%e3%81%97%e3%81%a6%e7%99%ba%e5%85%89%e3%81%99%e3%82%8b%e4%ba%8c%e6%ac%a1%e5%85%83%e3%83%95%e3%83%ac%e3%82%ad%e3%82%b7%e3%83%96%e3%83%ab%e3%83%87%e3%82%a3%e3%82%b9/ http://www.owweac.cn/ja/%e6%b0%b4%e3%82%92%e5%88%a9%e7%94%a8%e3%81%97%e3%81%a6%e7%99%ba%e5%85%89%e3%81%99%e3%82%8b%e4%ba%8c%e6%ac%a1%e5%85%83%e3%83%95%e3%83%ac%e3%82%ad%e3%82%b7%e3%83%96%e3%83%ab%e3%83%87%e3%82%a3%e3%82%b9/#respond 土, 23 9月 2017 03:23:06 +0000 https://www.mcctcarbide.com/a-two-dimensional-flexible-display-that-utilizes-water-to-emit-light/

【はじめに】特定の機(jī)能と構(gòu)造を備えたフレキシブル電子デバイスの構(gòu)築は、ウェアラブル電子製品、埋め込み型チップ、皮膚感知、フレキシブルロボットなど、將來の人間の生活にさまざまな可能性を提供します。発光材料に関する研究の深化とともに、これらの創(chuàng)造的な製品は研究室から人々の生活へと移行しています。例えば、発光素子を含む衣服、光信號(hào)によって構(gòu)築された検出器、光信號(hào)を介して薬物を放出することができるチップ、信號(hào)伝送に関與するチップなど。 ACフレキシブル発光材料の大規(guī)模製造を達(dá)成するために、主にスクリーン印刷技術(shù)を使用する初期の研究。最近では、3Dプリント技術(shù)の出現(xiàn)により、より複雑な構(gòu)造の柔軟な材料も生産されています。研究者は、主に4つの部分で構(gòu)成される、発光デバイスの新しい構(gòu)造を設(shè)計(jì)しました。電極、発光層、誘電體層および制御可能な電極層の側(cè)方分布。電極層の制御は、異なる偏光材料または導(dǎo)電性薄膜を選択することにより達(dá)成される。この新しい構(gòu)造は単純であるだけでなく、大規(guī)模な製造を促進(jìn)します。さらに重要なのは、従來の発光デバイスの感覚と比較して、1対の対向する電極が互いに積み重ねられるのではなく、並んでいる分布です。 。この構(gòu)造上の利點(diǎn)のため、研究者はさまざまなタイプのデバイスを設(shè)計(jì)しました。たとえば、この柔軟な素材は傘に取り付けられ、水が傘に落ちると傘が光り、光信號(hào)の変化を利用したリモート検出器を構(gòu)築することもできます。図1.従來のサンドイッチ構(gòu)成の比較発光デバイス(S-ELSと表示)および分極電極ブリッジ発光デバイス(PEB-ELSと表示)a)従來のサンドイッチデバイス(S-ELS)の構(gòu)造の概略図b)分極電極ブリッジ発光の概略図デバイス(PEB-ELS)c)PEB-ELSのフレキシブルディスプレイ; d)PEB-ELSの背面が拡大され、電極幅は0.45 mm、ピッチは0.40 mm.e)PEB-ELSで水が輝く; f)放水前後のAC電圧の変化の比較。図2. PEB-ELSのパフォーマンスに対するブリッジ材料、電圧、周波數(shù)の影響a)PEB-ELSの正の部分拡大、1.5 mmの電極幅、0.4 mmの間隔; b)異なるブリッジの追加液體、暗い狀況での光; c)光度と2 kHzの電圧周波數(shù)でのブリッジされた液體のタイプと濃度との関係; d)光度に対する基板インピーダンスの影響、畫像を挿入図3は、液體の接觸時(shí)間と光度の関係を示しています。e)電圧が一定の場合の光度と電圧周波數(shù)の関係; f)PEB-ELSに鉛筆でピカソの絵を描きます。 .ab)実験図をつなぎ、最初のPEB-ELSを2つの部分に分割し、ヒドロゲルを分極ブリッジとして使用し、2つの部分をテストに接続します; c)2つのビーカーに浸透したPEB-ELSの半分; d)ブリッジ用の透明なポリアクリルアミドヒドロゲル、長さ5 cm、幅1.6 cm、厚さ0.3 cm; e)2つのビーカーがヒドロゲルに接続された後、電圧が印加され、PEB-ELSが発光する; f)ヒドロゲルを直接配置するPEB-ELS図4.雨水センサーの準(zhǔn)備と性能テストa-b)雨水センサーの準(zhǔn)備図; cd)物理的地図の雨水センサー、白と暗い; e)ブリッジ電極としての手、PEB-ELSライト; f)水が凍るとPEB-ELSの発光強(qiáng)度が低下します?!兢蓼趣帷勘狙芯郡扦?、量産可能な低コストでフレキシブルな発光デバイスを提案します。この論文では、デバイスのルミネセンス性能を研究し、ルミネセンス性能とブリッジ材料および印加電圧との関係について考察します。そして、それを光信號(hào)センサーに基づいて作りました。傘が濡れたり手で觸れたりすると、接觸面が明るくなります。それだけでなく、この新しいタイプの発光デバイスは筆記にも使用でき、鉛筆で書くとき、対応する領(lǐng)域も點(diǎn)燈できます。これはまた、タッチディスプレイ技術(shù)の將來の開発に新たな可能性を提供します。
出典:Meeyou Carbide

万山特区| 聊城市| 固安县| 阿拉善盟| 崇礼县| 平武县| 石河子市| 靖西县| 桂东县| 盖州市| 敖汉旗| 安远县| 神池县| 金沙县| 阿图什市| 远安县| 桐庐县| 修文县| 海城市| 土默特右旗| 山西省| 阿拉善右旗| 福清市| 苍南县| 绥化市| 惠州市| 安丘市| 平顺县| 兴化市| 甘谷县| 泉州市| 襄垣县| 永州市| 南木林县| 滦平县| 乐陵市| 明光市| 康保县| 嘉黎县| 本溪市| 奉化市|

]]>
http://www.owweac.cn/ja/%e6%b0%b4%e3%82%92%e5%88%a9%e7%94%a8%e3%81%97%e3%81%a6%e7%99%ba%e5%85%89%e3%81%99%e3%82%8b%e4%ba%8c%e6%ac%a1%e5%85%83%e3%83%95%e3%83%ac%e3%82%ad%e3%82%b7%e3%83%96%e3%83%ab%e3%83%87%e3%82%a3%e3%82%b9/feed/ 0 18531