欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

Tools with positive or negative rake angle are fundamental cutting instruments whose geometric angle design directly affects machining outcomes. Among these, the rake angle (the angle between the tool’s front face and a reference plane perpendicular to the cutting plane) is one of the most critical parameters. Based on the direction of the rake angle, turning tools can be classified into two main types: positive rake angle tools and negative rake angle tools. This article will systematically introduce the structural characteristics, working principles, and applicable scenarios of these two types of tools.

What Are Positive and Negative Rake Angle Cutting Tools? 2

Basic Definitions of Positive and Negative Rake Angle Tools

Positive Rake Angle Tool

A positive rake angle tool refers to a turning tool where the front face is inclined toward the interior of the workpiece relative to the cutting point, resulting in a positive rake angle (typically +5° to +15°). Its structural characteristic is a relatively sharp cutting edge, with a smaller contact area between the front face and the chip.

Negative Rake Angle Tool

A negative rake angle tool, on the other hand, has a front face inclined outward from the workpiece relative to the cutting point, resulting in a negative rake angle (typically -5° to -10°). Its structural feature is a blunter cutting edge, with a thicker and more robust tooltip.

 

Advantages and Disadvantages of Positive and Negative Rake Tools

Positive Rake Angle Tool

Advantages:

Lower Cutting Forces: A positive rake angle allows smoother chip flow and reduces deformation, decreasing main cutting forces by 15–25%.

Better Chip Evacuation: Shorter chip-tool contact length reduces built-up edge formation.

Suitable for Finishing: Minimizes vibration, enabling better surface finish (Ra < 1.6 μm).

短所:

Lower Tooltip Strength: The positive geometry reduces material support, making the tool prone to chipping in interrupted cuts or hard materials.

Poor Heat Dissipation: Smaller chip-tool contact area limits heat transfer, accelerating crater wear at high speeds.

Shorter Tool Life: Typically 60–70% of negative rake tools under the same conditions.

 

Negative Rake Angle Tool

Advantages:

High Tooltip Strength: The negative angle creates a “support wedge,” improving impact resistance by >50%.

Superior Heat Dissipation: Larger chip-tool contact area enhances heat conduction, reducing cutting temperatures by 15–30°C.

Multi-Sided Usability: Often designed with double-negative angles, allowing flipping for extended use.

Limitations:

Higher Cutting Forces: Negative rake increases chip deformation, raising main cutting forces by 20–30%.

Greater Power Demand: Requires 15–20% more motor power from the machine tool.

Vibration Risk: Prone to chatter in long overhang machining due to increased cutting forces.

Rake Angle?tool

Experimental Comparison

The following systematic experiment compares the performance of carbide positive and negative rake tools under different machining conditions, providing practical insights for tool selection.

 

Experimental Design

1.Materials & Equipment:

Positive rake tool (+8° rake angle)

Negative rake tool (-6° rake angle)

Both use YG8 carbide substrate with TiAlN coating and 0.4 mm nose radius.

2.Workpiece:45# steel (Φ50×200 mm), quenched and tempered to HRC 28–32.

3.Machine:CA6140 lathe with 3-jaw chuck and tailstock center.

4.Measurement Instruments:

Surface roughness tester (Mitutoyo SJ-210)

Electron microscope (OLYMPUS DSX510)

Cutting force dynamometer (Kistler 9257B)

Infrared thermometer (Fluke Ti400)

5.Parameters

Fixed: Depth of cut (ap = 1 mm), feed rate (f = 0.15 mm/rev).

Variable: Cutting speed (v = 60–180 m/min).

Three repetitions per condition for reliability.

 

Results & Analysis

Tool Wear & Life Comparison

Using flank wear VB = 0.3 mm as the failure criterion:

What Are Positive and Negative Rake Angle Cutting Tools? 3

Negative rake angle tools demonstrate significantly longer service life, exceeding positive rake tools by an average of 50-70%. Analysis of wear patterns reveals that positive rake tools primarily fail through crater wear on the rake face and tooltip chipping, whereas negative rake tools exhibit more uniform flank wear, demonstrating superior fracture resistance.

Cutting Force Comparison

What Are Positive and Negative Rake Angle Cutting Tools? 4

The data shows that under all tested cutting speeds, negative rake tools generate significantly higher principal cutting forces than positive rake tools, with an average increase of approximately 17%. This is attributed to the negative rake design’s larger contact area between the tool’s rake face and chips, as well as intensified cutting deformation. Notably, while cutting forces for both tool types decrease with increasing cutting speed, the difference ratio remains essentially stable.

 

Cutting Temperature Comparison

Results indicate that negative rake tools maintain consistently lower cutting temperatures than positive rake tools, typically by 15-25°C. This thermal advantage primarily stems from the negative rake design’s enhanced tooltip strength and improved heat dissipation capacity. The temperature difference becomes particularly pronounced during high-speed cutting (v>120m/min), reaching approximately 30°C.

 

Surface Quality Evaluation

Surface roughness serves as a critical indicator of machining quality. At a feed rate of f=0.15mm/rev, measurements show:

Positive rake tool surface roughness (Ra): 1.6-2.0μm

Negative rake tool surface roughness (Ra): 1.2-1.5μm

Electron microscope observations reveal that surfaces machined with negative rake tools exhibit more uniform texture patterns with fewer burrs and vibration marks. This improvement results from the negative rake design’s enhanced system rigidity that reduces cutting vibrations. Furthermore, negative rake tools maintain more stable tooltip geometry during machining, avoiding the surface quality degradation caused by micro-chipping that often occurs with positive rake tools.

 

Conclusions

1.While carbide negative rake tools show slightly inferior performance in cutting force, they demonstrate clear advantages in cutting temperature control, surface quality, and tool life.

2.The performance advantages of negative rake tools become more pronounced at higher cutting speeds, making them particularly suitable for modern high-speed machining requirements.

3.Positive rake tools excel in reducing cutting forces and are better suited for machining systems with limited rigidity.

4.Optimal tool angle selection should comprehensively consider multiple factors including workpiece material, machine tool conditions, and specific machining stages.

コメントを殘す

メールアドレスが公開されることはありません。 が付いている欄は必須項(xiàng)目です

日本一二区视频在线观看| 中文字幕一区二区三区中文字幕| 找个日韩操逼的看看| 校花内射国产麻豆欧美一区| 九九视频精品只有这里有| 少妇勾搭外卖员在线观看| 亚洲国际精品一区二区| 大波美女被插的好爽| 波多野结衣浴尿解禁在线| 日本潘金莲三级bd高清| 阴茎大头插少妇蜜穴视频| 亚洲国际精品一区二区| 色噜噜噜噜一区二区三区| 肏亚洲女人小骚逼| 国产精品免费第一区二区| 老狼精品卡1卡2卡3网| 小骚货舔小骚逼视频| 熟妇丰满大阴户熟妇啪啪| 亚洲一区亚洲二区在线观看| 波多野吉衣吹潮Av| 伊人久久久久久久久香港| 老头鸡巴操老太骚逼| 91久国产在线观看| 无码毛片一区二区本码视频| 日韩精品无码一区二区三区不卡| 美女玩奶子和鸡巴| 欧美猛男一区二区三区快播| 久久高清中文字幕第一页| 奇米一区二区三区视频在线观看| 高清无码精品一区二区三区| 天天舔操操操av| 久久久久久亚洲精品首页| 尤物AV无码国产在线看| 无码爆一二三区免费视频| 中文字幕 av一区二区| 熟女大屁股亚洲一区| 成人av大全免费一区二区三区| 亚洲一级片在线播放| 束缚久久久久久免费高潮| 国产精品一区二区日本欧美| 草草久性色av综合av|