欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

Due to the “dual high” characteristics of high hardness and high toughness, the application scope of ultrafine-grained carbides has been expanding, leading to the development of tungsten carbide (WC), the main raw material for carbides, towards ultrafine particles. This is an undeniable fact. However, coarse-grained WC?possesses a series of advantages such as fewer microstructural defects, high microhardness, and low microscopic strain. As a result, it finds extensive applications in mining tools, petroleum drilling tools, engineering machinery, stamping dies, and hard surfacing technologies. In particular, its application in hard surfacing technology has rapidly developed in recent years, such as the production of pipe-type welding rods, electrodes, and spray welding powders using coarse-grained WC. Coarse-grained WC has been identified as a cost-effective wear-resistant hard surfacing material, which is of great significance in improving the efficiency of mechanical equipment and conserving metal materials.

The traditional method for producing coarse-grained WC?involves the following steps: WO? is reduced at high temperature to obtain coarse tungsten powder, which is then subjected to high-temperature carburization to produce coarse-grained WC. The WC produced by this process is approximately 22μm in size. This method has dominated the domestic industry for a long time.

How to Manufacture Coarse-Grained WC Using Activated Additive Method 2

Development of Production Methods

In the past decade, there have been continuous updates in the manufacturing methods of coarse-grained WC?powder, including:

method 1 for coarse-grained WC Powder

High-temperature carburization of medium or fine tungsten powder: This process can produce coarse WC grains with a particle size of 7-8μm.

method 2

MACEO (Microplasma-Assisted Chemical Etching of Oxygen) method: This process can produce extremely coarse WC powder with a sieve size larger than 40 mesh. However, it requires special treatment and impurity purification before being used for manufacturing carbides.

method 3

Cobalt-nickel carburization method: This process utilizes a small amount of cobalt and nickel to accelerate the carbide formation of tungsten particles and promote rapid growth of WC grains. With this mechanism, coarse-grained WC with a particle size of 22μm can be produced at relatively low temperatures.

method 4

Classification of coarse-grained WC powder: This method involves using techniques such as cyclone separation, fluidized bed classification, liquid elutriation, or sieving to separate large particles containing W?C and free carbon from WC. This not only narrows the particle size distribution range but also improves the quality of WC powder by increasing the compound carbon content and reducing the free carbon content.

As the application scope of coarse-grained WC?continues to expand, the demand for coarse carbide with a particle size larger than 22μm cannot be met. Therefore, it becomes necessary to develop new coarse-grained WC?products with a particle size greater than 30μm. After several years of exploration, we have successfully experimented with the additive method to produce coarse-grained WC?powder with a particle size larger than 30μm. This method has the advantages of a simple and feasible process, easy operation, utilization of existing production lines without the need for additional equipment, low process temperatures that save energy and prolong the lifespan of process equipment, and high purity of the produced product with no residual additives. The particle crystallization is intact, and the particle size distribution is uniform, consistent with the normal production of WC for carbides.

How to Manufacture Coarse-Grained WC Using Activated Additive Method 3

Experimental Method and Results

How to Manufacture Coarse-Grained WC Using Activated Additive Method 4

The experiment utilized blue tungsten oxide, produced by our factory, as the raw material. After uniformly adding the additive, it was subjected to continuous hydrogen reduction in a furnace at temperatures ranging from 900 to 1100°C, resulting in the production of tungsten powder (W). After carbonization with appropriate carbon content, the tungsten powder was further subjected to a one-hour carbonization process at around 2000°C in a continuous direct-heating carbon tube furnace. The coarse-grained WC?powder was obtained after ball milling and crushing.

The properties of the raw material, blue tungsten (W), are shown in Table 1. The properties of the intermediate product, tungsten powder (W), can be found in Table 2. The properties of the final product are presented in Table 3.

Using 1# WC with approximately 10% Co in the conventional process, the performance of the produced carbide?is as follows: strength of 2560 N/mm2, hardness of 86.5 (HRA), density of 14.42 g/cm3, magnetic flux density of 5300 A/m2, and WC grain size of 3.5 μm.

 

Analysis of Experimental Results

The above experimental results demonstrate that the additive used in the reduction and carbide formation processes of tungsten significantly increases the grain size of tungsten powder and tungsten carbide particles. As a result, various physical properties of tungsten powder and tungsten carbide powder undergo significant changes.

How to Manufacture Coarse-Grained WC Using Activated Additive Method 5

Compared to products without the additive, the addition of the additive can increase the particle size of tungsten powder by 3.5 to 4.5 times and the particle size of tungsten carbide powder by 2.5 to 3.0 times. Within the scope of the experiment, the process temperature has a significant influence on the particle size of tungsten powder and tungsten carbide. However, the variation in additive content does not have a significant impact on the particle size of tungsten powder and tungsten carbide powder.

coarse-grained WC

Preliminary Exploration of Activation Mechanism

The experimental results indicate that the additive promotes the growth of WC particles, mainly during the tungsten reduction stage. However, during the carbide formation process, the particle size of the product does not increase and, in fact, slightly decreases.

It is well known that the reduction of blue tungsten (primarily composed of WO?go) to tungsten powder undergoes several stages: WO?go → WO?n → WO? → W. During the WO?go → WO? stages, the product generally maintains the particle morphology of its precursor. However, during the WO? → W stage, almost all particles undergo a significant change in morphology and there is a considerable variation in particle size. This can be attributed to two main reasons: first, the solid-state phase transformation during the reduction process leads to particle fracture and refinement; second, the volatilization → reduction → deposition mechanism causes particle coarsening.

How to Manufacture Coarse-Grained WC Using Activated Additive Method 6

 

We believe that the presence of the additive not only enhances the volatilization → reduction → deposition process by creating an additional channel for the formation of WOxnReO(gas), but also suppresses particle fracture during certain solid-state phase transformations that occur during the reduction process. This further exacerbates the coarsening and refinement of intermediate reduction products. As a result, the additive increases the base number of tungsten powder particles that undergo growth and intensifies the cycle of re-oxidation → volatilization → reduction → deposition of fine tungsten powder particles. This is the mechanism by which the additive activates and promotes the growth of tungsten powder particles during the reduction process.

 

Summary and Current Issues In this study

it is observed that the carbide process conditions for tungsten powder described in the paper are not entirely optimal. As a result, some of the coarse particles in the final product of WC powder contain W?C inclusions in their cores, accounting for approximately 2.4% of the total particles, as shown in Figure 1. Therefore, further improvements are required in the carbide process to ensure its suitability for the production of carbides.

 

 

 

 

コメントを殘す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

乱入一二三免费在线观看-久久精品亚洲精品国产色婷婷| 一区二区国产高清在线-日本高清无卡一区二区三区| 亚洲另类熟女国产精品-懂色一区二区三区在线播放| 成人av一区二区蜜桃-亚洲色图激情人妻欧美| 性色国产成人久久久精品二区三区-偷窥中国美女洗澡视频| 国产精品久久99精品毛片-国产四季高清一区二区三区| 亚洲美女喘息呻吟的网站-国产免费一区二区三区三洲| 人妻少妇无乱码中文字幕-人成免费视频一区二区| 国产欧美日韩精品一区在线-久久精品视频免费获取地址| 白嫩美女娇喘呻吟高潮-久久一区二区三区日产精品| 国产精品电影在线一区-亚洲国产大片一区二区官网| 中文字幕日韩不卡久久-五月天中文字幕啊av| 久久精品人妻一区二区三区极品-久久99热这里只有精品免费| 99精品只有久久精品免费-蜜臀一区二区三区精品久久久| 亚洲一区二区少妇激情-国产精品美女久久高潮| 在线免费观看黄片喷水-国产精品白丝网站在线观看| 性激烈欧美三级在线播放-久久中文字幕人妻少妇| 免费午夜福利视频在线观看-亚洲成人日韩欧美伊人一区| 欧美三级韩国三级日本三斤-日本不卡一区不卡二区| 欧美日韩国产综合四区-爆操极品尤物熟妇14p| 日本女优一卡二卡在线观看-欧美大胆a级视频秒播| 亚洲国产精品日韩欧美-国产又粗又硬又大爽黄| 欧美视频在线观看国产专区-亚洲91精品在线观看| 国产成人精品免费视频大全办公室-亚洲欧美日本综合在线| 国产一区二区三区四区五区麻豆-欧美一级在线视频播放| 国产欧美日本不卡精美视频-日本后入视频在线观看| 国产精品二区高清在线-91精品91久久久久久| 深夜三级福利在线播放-日韩精品一区二区在线天天狠天| 中文字幕日韩精品不卡一区二区-成人av在线观看一区二区| 乱入一二三免费在线观看-久久精品亚洲精品国产色婷婷| 97香蕉久久国产在线观看-麻豆黄色广告免费看片| 日韩二级视频在线观看-美女扒开奶罩露出奶子的视频网站| 日本韩国亚洲欧美三级-日本东京不卡网一区二区三区| 婷婷六月视频在线观看-久久亚洲综合国产精品| 91亚洲美女视频在线-熟妇人妻精品一区二区三区蜜臀| 久久网站中文字幕精品-三级精品久久中文字幕| 免费av一区在线观看-国产精品视频高潮流白浆视频免费| 一区二区三区日本韩国欧美-日本1区2区3区4区在线观看| 黄色91av免费在线观看-欧美黄片一级在线观看| 91亚洲美女视频在线-熟妇人妻精品一区二区三区蜜臀| 男人的天堂久久精品激情-最新亚洲精品a国产播放|