欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

Inclusions in molten steel during smelting are one of the important reasons for cracks in steel castings. In order to reduce inclusions in molten steel, the smelting operations of deoxidization, desulfuration, impurity removal and degassing should be strengthened in the smelting process, and necessary measures should be taken in the ladle behind the furnace, such as adding rare earth to modify the shape of inclusions, so as to reduce the existence of inclusions and eliminate the cracks of steel castings better.

1. Types and causes of inclusions in steel

Inclusions in steel mainly refer to non-metallic inclusions in steel. It is generally believed that non-metallic inclusions in steel usually exist in the following forms: oxides: F EO, Fe2O3, m no, Al2O3, SiO2, MgO, etc.; sulfides: m ns, FES, etc.; silicates: fesio 4, m nsio 4, FeO · a L2O3 · SiO2, etc.; nitrides: AlN, Si3N4, etc.

The non-metallic inclusions in steel come from two aspects: one is generated along with the smelting process, namely, deoxidizing products of ferroalloy are added during tapping and secondary oxidation products of molten steel and air during pouring, which are called endogenous inclusions, which are generally small particles and evenly distributed in steel; the other is brought in from outside for various reasons, which are called foreign inclusions, This kind of inclusions are mostly irregular in shape, large in size and uneven in distribution, which is the main cause of cracks and is harmful to steel.

Analysis of Crack in Steel Casting 2

The endogenetic inclusions are mainly produced in the following situations: ① in the smelting process, the deoxidized products are not completely eliminated, or the temperature drops during the pouring process, and the deoxidized products generated by the continuous reaction are too late to float and remain in the molten steel, some of them exist in the matrix structure of the steel with small particles, some of them gather into large particles Al2O3), Some of them exist in steel in solid solution state (such as m no and f EO); ② in the process of tapping and pouring, the molten steel is oxidized in contact with air, and oxygen combines with elements in steel to form secondary oxide and remains in the molten steel; during the solidification process of molten steel, FES and FeO with low melting point are separated and crystallized from the molten steel, and finally precipitated at the grain boundary and between dendrites.

Foreign inclusions: this kind of inclusions are mainly brought in by the raw materials, such as sediment, slag and protective slag. The refractory materials of the pouring system are washed and etched by the molten steel, and remain in the molten steel, most of which are large particle inclusions.

The non-metallic inclusions are dissolved in the molten steel or exist in the molten steel alone at high temperature. However, with the decrease of temperature and the change of composition, gas pressure and other conditions, the inclusions originally dissolved in the molten steel will be separated as independent phases and gathered on the grain boundary during the crystallization process, becoming the micro unit for cutting the connection of cast steel matrix and the initial source of cracks, Thus, the potential hidden danger of crack is formed.

2. Relationship between main inclusions and cracks in cast steel and measures to reduce them

In the non-metallic inclusions, the main reason for the cracks of steel castings is sulfide inclusions, which often act together with other factors to increase the crack tendency of steel castings. In cast steel, sulfide inclusions are divided into three types: type I – spherical; type II – point chain like intergranular film; type III – arbitrarily distributed sharp angle. Among them, class II inclusions are the most harmful to steel, class III is the second, and class I is the least. The sulfide inclusions are related to the degree of deoxidization and the amount of residual aluminum in steel. When the amount of aluminum solid solution is low and the amount of oxygen remains little, class I inclusions can be obtained.

Deoxidizer has great influence on the formation of inclusions and the properties of steel. The deoxidizing effect of the composite Deoxidizer is better than that of the single deoxidizer, because the inclusions formed by the composite Deoxidizer are large and easy to float up and remove. If the deoxidation of molten steel is not enough, it is easy to have porosity and crack. However, the amount of aluminum used for final deoxidation is just enough to deoxidize without remaining, the amount of aluminum solid solution is low, and the amount of oxygen remaining is small, which will result in class II inclusions. Generally, excessive aluminum deoxidization will result in class III inclusions. It should be noted that if excessive aluminum is used, more aluminum nitride inclusions will precipitate along the grain boundary, resulting in “rock like” brittle fracture and deterioration of steel properties. Therefore, it is unreasonable to deoxidize with excessive aluminum. The amount of aluminum added and the residual aluminum in steel should not be too low or too high.

Aluminum deoxidization is a widely used method of steel deoxidization. Two deoxidizing processes are usually used in industrial production, one is adding aluminum deoxidizing process, the other is controlling aluminum deoxidizing process. The former is to completely remove the dissolved oxygen in the steel with aluminum, and then remove the Al2O3 inclusion as much as possible through various ways of agitation; the latter is to roughly deoxidize only with silicon manganese, and strictly control the aluminum and calcium content in the steel, so as to control the composition, property and morphology of the oxide inclusion precipitated in the steel [3]. The first deoxidation rate of the former is more than 90, and the deoxidation product is mainly Al 2O 3; the second one is greatly reduced, and the first deoxidation product is mainly SiO2.

Foreign inclusions can be removed according to their sources, while endogenous inclusions need to be controlled by deoxidation and calcium treatment.

In ladle refining, more and smaller argon bubbles are blown into the molten steel to remove the primary deoxidation products.

In order to better remove inclusions and reduce cracks in steel, the following measures are taken for smelting operation.

(1) Prepare raw materials to prevent foreign inclusions.

(2) Adopt reasonable steelmaking process: such as adopt reasonable oxygen blowing and power distribution process, ensure a certain decarburization speed to make inclusions float up, and maintain good furnace condition. (3) Compound Deoxidizer is used instead of single deoxidizer. (4) Adding rare earth in the ladle after the furnace can change the shape of inclusions, reduce inclusions and reduce the cracking of steel castings

Analysis of Crack in Steel Casting 3
鸡巴抽插逼逼视频| 国产美女色诱视频又又酱| 啊啊啊操我视频大全| 亚洲综合区欧美一区二区| 任你橹在线久久精品9| 性一乱一交一免费看视频| 无码视频在线观看| 奇米一区二区三区视频在线观看| 国产合区在线一区二区三区| 精品福利一区二区三区在线观看| 潮中文字幕在线观看| 欧美精品性做久久久久久| 九九热在线精品免费看| 白虎嫩穴抠逼高潮| 日韩av一区二区三区激情在线| 蜜臀AV无码国产精品尤物| 美女裸胸屁股视频| 阴茎大头插少妇蜜穴视频| 嗯嗯好硬好大啊老公| 日韩视频在线网页| 国产 欧美 日韩 黄片| 偷窥国内肥臀老熟女视频| 护士毛片在线看中文字幕| 日本潘金莲三级bd高清| 欧美精品一区二区三区四区五区| 国产一区二区三区免费观在线| 中国熟女色av夜夜嗨| 熟女大屁股亚洲一区| 大黑鸡巴操模特骚B| 啊灬啊别停灬用力啊男男在线观看| 精品人妻一区二区三区日产乱码| 亚洲综合色88综合天堂| 大波美女被插的好爽| 久久久精品欧美一区二区三免费| 日韩成人伦理片在线观看| 日韩伦理视频一区二区三区| 97国产精品免费一二区| 中文字幕在线资源第一页| 中文字幕无码区一区二区| 二次元男生操女生屁眼爽| 国精品午夜福利视频导航|