欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

Reducing CO2 greenhouse gas emissions has become the goal of the world, and now many places are discussing to levy CO2 emission tax. Due to the emergence of new fields, and people have to adapt to the existing fields, the above requirements also have a considerable impact on the research and development of machining tools. This is because more than ever, there is a need to replace drives, update lighter materials, and save energy and resources. R & D personnel see great potential for design modifications to tools, new coatings, new machining strategies, and digital solutions that respond in real time to a variety of conditions within the existing framework.

The current trend is to use these materials in new light aluminum lithium alloys, which will soon overwhelm traditional cutting tools and occupy an absolute advantage. Therefore, the demand for special high-performance tools for such applications will continue to increase. For example, aircraft parts made of aluminum alloy are usually processed up to 90%. According to the required part geometry, many grooves and cavities need to be milled out of the metal to ensure stability and reduce weight. In order to produce high quality parts economically and efficiently, high speed cutting (HSC) is needed to process the parts, and the cutting speed can reach up to 3 ? 000 ? M / min. Too low cutting parameters will lead to chip accretion, which will lead to rapid wear and frequent tool change. Because of the long running time of the machine tool, the cost is high. Therefore, machine tool operators specializing in aluminum processing have good reasons to require their cutting tools to obtain cutting data and tool life above the average level, as well as extremely high machining reliability.

We have shown how to deal with these complex requirements. The 90 ° milling cutter is equipped with a new type of indexable blade. It uses a new PVD coating, manufactured using the “hipims method.”. Hipims stands for “high power pulsed magnetron sputtering”, a technology based on magnetron cathode sputtering. The unique feature of this physical coating process is to form a very dense and smooth PVD coating, which can reduce the friction and the tendency of chip accretion. At the same time, this method improves the stability of the cutting edge, and increases the resistance of the back face wear, thus achieving the maximum metal removal rate. Field tests have shown that hipims indexable blades have advantages over standard types. Tool life increased by 200%. The demand for high-performance cutting tools for processing aluminum alloy is growing, especially in the aviation industry and automobile industry.

Dynamic milling: a milling strategy focusing on efficiency

Many industries (especially the supply industry) are facing the pressure of improving the processing stability, accelerating the processing speed, reducing the processing cost and ensuring the processing quality. At the same time, the requirements of machining reliability and cost efficiency are also strict for surface quality and dimensional stability. In addition, the demand for lightweight or heat-resistant materials is also growing. However, due to these properties, these materials from the ISO m and ISO s material groups are often difficult to accurately process. Dynamic milling provides solutions for this field, while ensuring production efficiency and machining reliability, which is why more and more metal processing companies rely on this method.

The difference between high performance cutting (HPC) and high dynamic cutting (HDC) is the movement and force of milling cutter. In the high performance cutting process, when the milling tool moves, the cutting depth is relatively small; in the high dynamic cutting process, the CAD / cam control system controls along the path of the tool during the processing of the workpiece shape (Figure 1). This prevents or at least reduces non cutting time. Moreover, the cutting depth of high dynamic cutting is much larger than that of traditional high-performance cutting, that is, the stroke distance is reduced, because the whole tool length can be used.

What is the Tool Development Trend in Present Machining Industry 2


Figure 1 dynamic milling strategy requires appropriate workpiece, milling tool, machine tool and CAD / CAM system

In the process of high performance cutting, the envelope angle is often very large. Therefore, the force in the process is also very large. This will speed up the tool and machine spindle wear. On the other hand, dynamic milling is characterized by high machining stability and long tool life. Generally speaking, the envelope angle of high dynamic cutting is very small, that is to say, the force of the tool and machine tool is much smaller than that of high performance cutting. Compared with high performance cutting, high dynamic cutting has higher cutting parameters, smaller non cutting time and greater machining stability, so its metal removal rate is very high.

Adaptive feed control: using real-time parameters to optimize cutting parameters

For a long time, automation, digitization and networking technology have been widely used in many metal processing fields, and are very popular. In particular, the hardware and software used to collect and analyze real-time data have made a huge leap in performance. Software tools demonstrate how these tools provide numerous opportunities for optimizing processes (Figure 2). Adaptive feed control analyzes the input data of machine tool in real time and adjusts the machining accordingly. This answers a key question for many users. That is, how to give full play to the benefits of the machine tool without major changes to the process or complex reprogramming? The software can greatly shorten the processing time of a single piece. The software has been integrated with the existing control program, and the data in the program has been applied to the machining process.

What is the Tool Development Trend in Present Machining Industry 3


Figure 2 dynamically adjust the feed according to the cutting conditions. In this way, the production time of a single piece can be shortened and the processing reliability can be improved

During the first tool cutting, the computer “l(fā)earns” the idle output of the spindle and the maximum cutting efficiency of each tool. It then measures the spindle output up to 500 times per second and automatically adjusts the feed in each case. That is to say, the machine tool always runs with the maximum feed amount of each tool. If the cutting conditions change (cutting depth, machining allowance, wear, etc.), the computer will adjust the speed and output in real time. This not only has a positive impact on the machining time of the workpiece, but also improves the machining reliability with the optimized milling characteristics. The force acting on the spindle is more constant, and the service life of the cutter is prolonged.

If there is a risk of cutter breakage, the computer will immediately reduce the amount of feed or stop the operation completely. Using our high-end computer processing customers, its processing efficiency has achieved amazing improvement. If the process is compatible, the processing time can be reduced by 10%. We have managed to cut the processing time by another half. When the number is large, it will free up a lot of machining capacity. ” In addition, this method is effective no matter whether Walter tool is used or not. It only needs to meet the system requirements of the machine tool.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

操俄罗斯美女bb| 又爽又粗又大又长的爆草| 日本中文字幕无人区一区二区| 深插巴西美女的逼| 中文字幕在线观视频| 挺进绝色邻居的紧窄小肉| 91啪国线自产2019| 少妇被黑人到高潮喷出白浆| 大鸡巴射在穴穴里的视频| 欧美日本大白屁股大黑逼操逼视频| 欧美伦禁片在线播放| 插女生那个的视频| 免费黄片视频星空| 亚洲国产区男人本色| 日本一区二区高清免费不卡| 丁香婷婷亚洲六月综合色| 为什么搜索不到裸体| 精品一区二区久久久久无码| 免费女人男人肏逼| 挺进绝色邻居的紧窄小肉| 国产精品无码一二区免费| 粉嫩小穴被大鸡巴操视频在线观看| 麻豆国产欧美一区二区三区r| 国产精品亚洲一区二区三区极品| 中文字幕在线观看第二页| 亚洲一区亚洲二区在线观看| 国内不卡的中文字幕一区| 公交车上被后入搞逼漫画| 大香蕉尹人97超级视频| 亚洲AV无码一区二区三区天堂古| 联系附近成熟妇女| 一区亚洲免费二区| 久久久久国产AV成人片| 操老骚逼三级黄视频| 欧美一区二区三区四区五区精品| 男人添女人下面免費视頻| 毛片日产av一区二区三区四区| 黄色视频网在线观看| 欧美大鸡巴操大骚逼| 国产精品久久久69粉嫩| 操烂嫩逼内射视频|