欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

The structural shape of a part shall not only meet the design performance requirements, but also meet the processing process requirements. Therefore, it is necessary to understand the common process structure on parts.

Process structure of casting parts (including drawing of transition line)

The process structure of casting parts includes mold inclination, casting fillet, casting wall thickness, etc.

1. Formwork lifting slope

   When casting parts, in order to facilitate mold taking, a certain slope is often designed along the mold starting direction on the casting wall, that is, the mold starting slope. For the structure with small inclination, it may not be drawn on the graph, but the value of mold lifting inclination must be explained in words in the technical requirements. As shown in Figure 1.

What is the optimal structure of mechanical part drawing 1

Figure 1

2. Cast fillet

When casting parts, in order to prevent sand falling from the casting sand mold and avoid cracks or shrinkage cavities during casting cooling (as shown in Fig. 2), the intersection of casting surfaces shall be made into fillet transition, as shown in Fig. 3. Generally, the cast fillet shall be drawn in the drawing. When the radius of each fillet is the same or close, the radius value can be uniformly noted in the technical requirements, such as cast fillet R3 ~ R5, etc.

What is the optimal structure of mechanical part drawing 2

Figure.2

What is the optimal structure of mechanical part drawing 3

Figure.3

Because there are casting fillets at the intersection of casting surfaces, the intersection line of two surfaces becomes less obvious. However, on the part drawing, the theoretical intersection line of the surface must still be drawn, but it is required to leave a blank at both ends or one end of the intersection line, which is usually called the transition line. The drawing method of transition line is basically the same as that of intersection line without fillet. The differences between them are shown in Figure 4.

What is the optimal structure of mechanical part drawing 4

Figure.4

3. Casting wall thickness

  In order to avoid cracks or shrinkage cavities caused by internal stress during casting cooling, the wall thickness of the casting shall be as uniform as possible, and the transition between different wall thicknesses shall also be uniform, as shown in Figure 5.

What is the optimal structure of mechanical part drawing 5

Figure.5

Cutting process structure of metal parts

  The cutting process structure of metal parts includes chamfering and rounding, tool return groove or grinding wheel over travel groove, reasonable structure of drilling, boss and pit, etc.

1. Chamfering and rounding

  In order to facilitate assembly, chamfer is often machined at the shaft end or orifice, as shown in Fig. 6 (a). In order to avoid cracks on the stepped shaft or hole due to stress concentration, fillets are often machined at the turning point of the shoulder, as shown in Fig. 6 (b). The type and size of chamfering and rounding of parts shall be specified in the national standard.

What is the optimal structure of mechanical part drawing 6

Figure.6

2. Undercut or grinding wheel over travel groove

  In order to easily withdraw the tool during cutting and ensure the machining quality, the tool withdrawal groove or grinding wheel over travel groove is often machined at the shoulder of the machining surface, as shown in Fig. 6 (c). The structure and size of the over travel groove of the grinding wheel are specified in the national standard.

3. Bosses or pits

  In order to reduce the amount of machining and ensure good indirect contact of parts during assembly, bosses or pits are often made on the surface of parts.

4. Reasonable drilling structure

  In order to avoid axis deflection and bit breaking during drilling, the axis of the hole shall be perpendicular to the end face of the hole. Therefore, when there is a drilling structure on the inclined surface, a plane, boss or pit perpendicular to the drilling direction shall be designed, as shown in Figure 8.

Cutting process structure of metal parts

  The cutting process structure of metal parts includes chamfering and rounding, tool return groove or grinding wheel over travel groove, reasonable structure of drilling, boss and pit, etc.

1. Chamfering and rounding

  In order to facilitate assembly, chamfer is often machined at the shaft end or orifice, as shown in Fig. 6 (a). In order to avoid cracks on the stepped shaft or hole due to stress concentration, fillets are often machined at the turning point of the shoulder, as shown in Fig. 6 (b). The type and size of chamfering and rounding of parts shall be specified in the national standard.

What is the optimal structure of mechanical part drawing 7

Figure.6

2. Undercut or grinding wheel over travel groove

  In order to easily withdraw the tool during cutting and ensure the machining quality, the tool withdrawal groove or grinding wheel over travel groove is often machined at the shoulder of the machining surface, as shown in Fig. 6 (c). The structure and size of the over travel groove of the grinding wheel are specified in the national standard.

3. Bosses or pits

  In order to reduce the amount of machining and ensure good indirect contact of parts during assembly, bosses or pits are often made on the surface of parts, as shown in Figure 7What is the optimal structure of mechanical part drawing 8

What is the optimal structure of mechanical part drawing 9

Figure.7

4. Reasonable drilling structure

  In order to avoid axis deflection and bit breaking during drilling, the axis of the hole shall be perpendicular to the end face of the hole. Therefore, when there is a drilling structure on the inclined surface, a plane, boss or pit perpendicular to the drilling direction shall be designed, as shown in Figure 8.

What is the optimal structure of mechanical part drawing 10

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

咪咪爱一级特黄大片| 午夜场射精嗯嗯啊啊视频| 东京热无码AV一区二区三区| 亚洲视频免费观看| 欧美 日韩 亚洲 熟女| 高颜值情侣鸡巴插插淫叫| 国产午夜爽爽爽男女免费动漫AV| 国产熟女露脸普通话对白| 嗯啊好大好想要视频| 国产亚洲一区白丝在线观看| 韩国精品视频一区二区在线观看| 日本熟妇 bbw| 欧美黄色三级成人小视频| 大鸡巴操逼视频免费| 日韩欧美一级特黄大片欧| 国产精品久久久69粉嫩| 亚洲卡通动漫第127页| 亚洲乱码专区一区二区三区四区| 性爱大鸡吧喷水视频| 狂插美女大屁股在线观看| 国产精品久久久久妇| 人人摸人 人干人人草操| 午夜无码a级毛片| 国产亚洲一区二区手机在线观看| 日本中文字幕无人区一区二区| 韩国精品视频一区二区在线观看| 视频一区二区三区日韩视频| 五月天亚洲激情综合av| 久久99热人妻偷产精品| 女人被男人操到高潮视频| 思思夜免费公开视频| 中文字幕亚洲欧美精品一区二区| 精品一区二区视频在线观看| 男的日女生批网页| 午夜无码a级毛片| 人妻含泪让粗大挺进| 美女裸胸屁股视频| 中国美女操逼的视频| 大逼女人污污视频| 国产一区二区三区三级88| 精品一区二区久久久久无码|