欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

Nano-WC-Co carbides, known for their high strength and hardness, represent a promising direction for the development of carbides. Currently, the biggest challenge hindering the advancement of nano-crystalline WC-Co carbides is the difficulty in preparing nano-WC powder.

Typically, nano-WC powders are prepared using gas-phase reaction methods or high-energy ball milling techniques. The most widely used method for preparing WC-Co composite powders is through hydrogen reduction/carbonization of tungsten oxide. Therefore, controlling the microstructure and preparation process of tungsten oxide can yield nano-tungsten powder. However, there is currently a lack of in-depth research on how different carbonization methods affect the carbonization process of nano-tungsten powder. Research in this area holds significant practical value for the production of nano-tungsten carbide powders and the fabrication of nano-crystalline WC-Co carbides.

This study uses ball-milled tungsten oxide as the raw material and prepares nano-tungsten powder by controlling the hydrogen reduction process. Different carbonization methods, namely wet ball milling and dry milling, are employed to mix carbon, resulting in W+C mixed powders with varying morphologies. After carbonization, WC powder is obtained, aiming to enhance the uniformity of the dispersion of tungsten and carbon black particles through suitable carbonization methods and to explore a cost-effective industrial method for preparing homogeneous nano-WC powder.

How is the Properties of Nano-WC Powder Influenced by Carbonization Method? 2

The Importance of Carbon Content in Carbide?Powders

Carbon content is a crucial factor influencing the performance of carbides. Even minor fluctuations in carbon content can lead to changes in the alloy’s phase composition and microstructure, thus affecting its performance. When the carbon content in an alloy is insufficient, decarburized phases, which are brittle and unstable, may form, resulting in reduced strength and increased susceptibility to fracture and chipping during use. Conversely, when carbon content is too high, free graphite may form within the alloy, disrupting the continuity of the matrix and adversely affecting properties such as bending strength, toughness, and wear resistance.

Even fluctuations in carbon content within the normal phase range can significantly impact alloy performance. At the upper limit, strength and toughness are high while hardness and coercivity are low; at the lower limit, the opposite is true. This is because changes in carbon content, while not altering the number of phases, do modify the composition of the bonding phase. The hardness of the bonding phase is determined by tungsten content, which can be controlled by the total carbon in the raw materials during the sintering process. Thus, the overall carbon content of the alloy is vital for the material’s hardness and toughness. Studies of high-lifetime micro-drills and stamping dies have shown that the saturation magnetization of long-lasting alloys is typically controlled within 75% to 80%, indicating that their carbon content is maintained at the lower limit of the normal phase range.

 

Experimental Method

To further improve the uniformity of the powder and reduce particle agglomeration, mechanical milling and classification were used to preprocess WO. The preprocessed powder (MWO?) was then subjected to hydrogen reduction in a tubular furnace at 760°C to obtain nano-W powder. Following this, an appropriate dispersant was added for wet mechanical alloying and carbon mixing. After vacuum drying, the mixture was carbonized in a hydrogen molybdenum wire furnace at 1140°C, followed by crushing to obtain nano-WC powder. Additionally, dry milling was also employed for carbon mixing under the same carbonization conditions for comparative analysis. Scanning electron microscopy (SEM) was used to observe the morphology of WO?, W, and WC powders, while powder properties such as particle size, specific surface area, and total carbon content were measured. Specific surface area and particle size of the nano-W powder were measured using a SA3100 specific surface area analyzer and a particle size analyzer, and the morphology and uniformity of the powder were examined with a QUANTA-200 SEM.

 

Results and Discussion of the Experiment

Morphology and Properties of Nano-WC Powder

Figure 1 shows SEM images of the raw powder and nano-W powder. The results indicate that mechanical milling significantly refines the WO? powder, achieving a particle size of 1.1 μm and a specific surface area of 4.52 m2/g. After mechanical nano-sizing, the morphology of the WO? powder changed significantly, with smooth surfaces and a dense structure consisting of nano-particles. The large agglomerated WO? particles were crushed into finer particles with maximum agglomerates not exceeding 20 μm. Using MWO as a raw material under specific processing conditions, nano-sized W powder (20-30 nm) was produced, exhibiting inherited structural characteristics from its oxide precursor and showing varying degrees of loose agglomeration, with maximum agglomerate sizes not exceeding 20 μm.

Nano-WC

Morphology of W+C Mixture after Carbon Mixing

Figure 2 presents SEM images of the W+C mixtures obtained through different methods. After wet mechanical alloying with an appropriate dispersant, significant changes in the powder morphology were observed: most agglomerated W particles were effectively broken up and dispersed, with carbon black uniformly distributed. In contrast, the dry milling method resulted in noticeable agglomeration of W powder, with non-uniform distribution of carbon black.

 

Morphology and Structure of Nano-WC Powder

Figure 3 shows SEM images of different nano-WC powders. The nano-WC powder obtained through wet alloying with carbon was smaller and more uniform, with a well-defined morphology and minimal agglomeration, containing a total carbon content of 6.10-6.30%, a combined carbon content of 6.06%, and an average particle size of about 85 nm. In contrast, the WC powder produced through dry milling exhibited more tightly bound agglomerates and larger particle sizes, with an average size of approximately 189 nm. This discrepancy is attributed to the insufficient breaking of tungsten powder agglomerates during carbon mixing in the latter method, resulting in poor contact between carbon black and tungsten powder and non-uniform carbon distribution. During high-temperature solid-state reactions, the chemical migration process is lengthy and requires significant chemical driving force, making complete carbonization challenging; high temperatures can also cause tungsten particles within agglomerates to grow larger due to sintering.

How is the Properties of Nano-WC Powder Influenced by Carbonization Method? 3

Conclusione

1.Using wet mechanical alloying for carbon mixing followed by carbonization at 1140°C, a well-dispersed and uniform nano-WC powder was produced, with a total carbon content of 6.10-6.30% (controllable), a combined carbon content of 6.06%, and an average particle size of approximately 85 nm.

2.The use of wet milling for carbon mixing altered the agglomerated appearance of the nano-tungsten particles, improving the uniformity of the dispersion of W and C powders. This approach facilitates lower carbonization temperatures and results in uniformly sized and chemically stable nano-WC powders.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *

天堂无码不卡av| 尤物网三级在线观看| 大鸡巴射精在小穴动漫版| 可以免费看黄的香蕉视频| 伊人久久久久久久久香港| 有关日本黄色录像的视频| 操逼啊 啊 啊黄色视频| 男生的小鸡鸡插进女生的桃子 里| 免费看澡美女逼视频看看| 精品一区二区三区女性色| 丁香社区五月在线视频久| 国产a一级毛片午夜剧院| 午夜国产三级一区二区三| 人妻含泪让粗大挺进| 大黑屌狂操骚逼视频| 非洲人粗大长硬配种视频| 青青操成人版性视频| 午夜成人理论片在线观看| 日本潘金莲三级bd高清| 欧美一级淫片免费播放口| 男插女逼啪啪啪软件| 日韩久久奶茶视频| 色欲色欲色视频综合| 久久亚洲精品无码AV宋| 日韩乱码一区二区三区中文字幕| 大男人在线无码直播| 大鸡吧视频在线观看| 99久久精品国产一区二区成人了| 好嗨哟直播看片在线观看| 两个人免费视频高清| 胸大裸体美女视频| 骚逼嫩鸡巴喷水视频| 丰满少妇被强入在线观看| 国产精品一区二区日本欧美| 久久久精品亚洲Av| 日韩午夜经典福利| 97青青草免费在线观看| 久久久久国产AV成人片| 午夜十八禁福利亚洲一区二区| 成年人的一级黄色带| 综合欧美日韩一区二区三区|