{"id":1669,"date":"2019-05-22T02:47:38","date_gmt":"2019-05-22T02:47:38","guid":{"rendered":"http:\/\/www.meetyoucarbide.com\/single-post-the-science-of-high-resolution-electron-micro-graphs\/"},"modified":"2020-05-04T13:12:07","modified_gmt":"2020-05-04T13:12:07","slug":"the-science-of-high-resolution-electron-micro-graphs","status":"publish","type":"post","link":"https:\/\/www.meetyoucarbide.com\/fr\/the-science-of-high-resolution-electron-micro-graphs\/","title":{"rendered":"La science des micro-graphes \u00e9lectroniques \u00e0 haute r\u00e9solution"},"content":{"rendered":"
\n
\n
La microscopie \u00e9lectronique \u00e0 transmission \u00e0 haute r\u00e9solution (HRTEM ou HREM) est le contraste de phase (le contraste des images de microscopie \u00e9lectronique \u00e0 haute r\u00e9solution est form\u00e9 par la diff\u00e9rence de phase entre l'onde projet\u00e9e synth\u00e9tis\u00e9e et l'onde diffract\u00e9e, elle est appel\u00e9e contraste de phase.) Microscopie, qui donne un arrangement atomique de la plupart des mat\u00e9riaux cristallins.<\/div>\n
High-resolution transmission electron microscopy began in the 1950s. In 1956, JWMenter directly observed parallel strips of 12 \u00c5 copper phthalocyanine with a resolution of 8 \u00c5 transmission electron microscope, and opened high-resolution electron microscopy. The door to surgery. In the early 1970s, in 1971, Iijima Chengman used a TEM with a resolution of 3.5 \u00c5 to capture the phase contrast image of Ti2Nb10O29, and directly observed the projection of the atomic group along the incident electron beam. At the same time, the research on high resolution image imaging theory and analysis technology has also made important progress. In the 1970s and 1980s, the electron microscope technology was continuously improved, and the resolution was greatly improved. Generally, the large TEM has been able to guarantee a crystal resolution of 1.44 \u00c5 and a dot resolution of 2 to 3 \u00c5. HRTEM can not only observe the lattice fringe image reflecting the interplanar spacing, but also observe the structural image of the arrangement of atoms or groups in the reaction crystal structure. Recently, Professor David A. Muller’s team at Cornell University in the United States used laminated imaging technology and an independently developed electron microscope pixel array detector to achieve a spatial resolution of 0.39 \u00c5 under low electron beam energy imaging conditions.<\/div>\n
Actuellement, les microscopes \u00e9lectroniques \u00e0 transmission sont g\u00e9n\u00e9ralement capables d'ex\u00e9cuter HRTEM. Ces microscopes \u00e9lectroniques \u00e0 transmission sont class\u00e9s en deux types: haute r\u00e9solution et analytique. Le TEM \u00e0 haute r\u00e9solution est \u00e9quip\u00e9 d'une pi\u00e8ce polaire d'objectif haute r\u00e9solution et d'une combinaison de diaphragme, ce qui rend l'angle d'inclinaison de la table d'\u00e9chantillonnage petit, r\u00e9sultant en un coefficient d'aberration sph\u00e9rique objectif plus petit; tandis que le TEM analytique n\u00e9cessite une plus grande quantit\u00e9 pour diverses analyses. L'angle d'inclinaison de la platine d'\u00e9chantillonnage, de sorte que le sabot de la lentille d'objectif est utilis\u00e9 diff\u00e9remment du type haute r\u00e9solution, affectant ainsi la r\u00e9solution. En g\u00e9n\u00e9ral, un TEM \u00e0 haute r\u00e9solution de 200 kev a une r\u00e9solution de 1,9 \u00c5, tandis qu'un TEM analytique \u00e0 200 kev a un 2,3 \u00c5. Mais cela n'affecte pas l'image haute r\u00e9solution de prise de vue TEM analytique.<\/div>\n

\"\"<\/p>\n

As shown in Fig. 1, the optical path diagram of the high-resolution electron microscopy imaging process, when an electron beam with a certain wavelength (\u03bb) is incident on a crystal with a crystal plane spacing d, the Bragg condition (2dsin \u03b8 = \u03bb) is satisfied, A diffracted wave is generated at an angle (2\u03b8). This diffracted wave converges on the back focal plane of the objective lens to form a diffraction spot (in an electron microscope, a regular diffraction spot formed on the back focal plane is projected onto the phosphor screen, which is a so-called electron diffraction pattern). When the diffracted wave on the back focal plane continues to move forward, the diffracted wave is synthesized, an enlarged image (electron microscopic image) is formed on the image plane, and two or more large objective lens stops can be inserted on the back focal plane. Wave interference imaging, called high-resolution electron microscopy, is called a high-resolution electron microscopic image (high-resolution microscopic image).<\/div>\n
Comme mentionn\u00e9 ci-dessus, l'image microscopique \u00e9lectronique \u00e0 haute r\u00e9solution est une image microscopique \u00e0 contraste de phase form\u00e9e en faisant passer le faisceau transmis du plan focal de la lentille de l'objectif et les plusieurs faisceaux diffract\u00e9s \u00e0 travers la pupille de l'objectif, en raison de leur coh\u00e9rence de phase. En raison de la diff\u00e9rence dans le nombre de faisceaux diffract\u00e9s participant \u00e0 l'imagerie, des images haute r\u00e9solution de noms diff\u00e9rents sont obtenues. En raison des diff\u00e9rentes conditions de diffraction et de l'\u00e9paisseur de l'\u00e9chantillon, les micrographies \u00e9lectroniques \u00e0 haute r\u00e9solution avec diff\u00e9rentes informations structurelles peuvent \u00eatre divis\u00e9es en cinq cat\u00e9gories: franges de r\u00e9seau, images structurelles unidimensionnelles, images de r\u00e9seau bidimensionnel (images monocellulaires), bidimensionnelles image de structure (image \u00e0 l'\u00e9chelle atomique: image de structure cristalline), image sp\u00e9ciale.<\/div>\n
Franges de r\u00e9seau: si un faisceau de transmission sur le plan focal arri\u00e8re est s\u00e9lectionn\u00e9 par la lentille d'objectif et qu'un faisceau de diffraction interf\u00e8re les uns avec les autres, un motif de frange unidimensionnel avec un changement p\u00e9riodique d'intensit\u00e9 est obtenu (comme le montre le triangle noir dans Fig. 2 (f)) Il s'agit de la diff\u00e9rence entre une frange de r\u00e9seau et une image de r\u00e9seau et une image structurelle, qui ne n\u00e9cessite pas que le faisceau d'\u00e9lectrons soit exactement parall\u00e8le au plan de r\u00e9seau. En fait, dans l'observation de cristallites, de pr\u00e9cipit\u00e9s et similaires, les franges de r\u00e9seau sont souvent obtenues par interf\u00e9rence entre une onde de projection et une onde de diffraction. Si un diagramme de diffraction d'\u00e9lectrons d'une substance telle que des cristallites est photographi\u00e9, un anneau de culte appara\u00eetra comme indiqu\u00e9 dans (a) de la Fig.2.<\/div>\n

\"\"<\/p>\n

Image de structure unidimensionnelle: si l'\u00e9chantillon a une certaine inclinaison, de sorte que le faisceau d'\u00e9lectrons est incident parall\u00e8lement \u00e0 un certain plan cristallin du cristal, il peut satisfaire le motif de diffraction de diffraction unidimensionnelle montr\u00e9 sur la figure 2 (b) ( distribution sym\u00e9trique par rapport au spot de transmission) Diagramme de diffraction). Dans ce mod\u00e8le de diffraction, l'image haute r\u00e9solution prise dans la condition de mise au point optimale est diff\u00e9rente de la frange du r\u00e9seau, et l'image de structure unidimensionnelle contient les informations de la structure cristalline, c'est-\u00e0-dire l'image de structure unidimensionnelle obtenue, comme indiqu\u00e9 sur la figure 3 (une image structurelle unidimensionnelle \u00e0 haute r\u00e9solution de l'oxyde supraconducteur \u00e0 base de Bi montr\u00e9.<\/div>\n
Two-dimensional lattice image: If the electron beam is incident parallel to a certain crystal axis, a two-dimensional diffraction pattern can be obtained (two-dimensional symmetric distribution with respect to the central transmission spot, shown in Fig. 2(c)). For such an electron diffraction pattern. In the vicinity of the transmission spot, a diffraction wave reflecting the crystal unit cell appears. In the two-dimensional image generated by the interference between the diffracted wave and the transmitted wave, a two-dimensional lattice image showing the unit cell can be observed, and this image contains information on the unit cell scale. However, information that does not contain an atomic scale (into atomic arrangement), that is, a two-dimensional lattice image is a two-dimensional lattice image of single crystal silicon as shown in Fig. 3(d).<\/div>\n
Two-dimensional structure image: a diffraction pattern as shown in Fig. 2(d) is obtained. When a high-resolution electron microscope image is observed with such a diffraction pattern, the more diffraction waves involved in imaging, the information contained in the high-resolution image is also The more. A high-resolution two-dimensional structure image of the Tl2Ba2CuO6 superconducting oxide is shown in Fig. 3(e). However, the diffraction of the high-wavelength side with higher resolution limit of the electron microscope is unlikely to participate in the imaging of the correct structure information, and becomes the background. Therefore, within the range allowed by the resolution. By imaging with as many diffracted waves as possible, it is possible to obtain an image containing the correct information of the arrangement of atoms within the unit cell. The structure image can only be observed in a thin region excited by the proportional relationship between the wave participating in imaging and the thickness of the sample.<\/div>\n

\"\"<\/p>\n

Image sp\u00e9ciale: Sur le diagramme de diffraction du plan focal arri\u00e8re, l'insertion de l'ouverture ne s\u00e9lectionne que l'imagerie d'onde sp\u00e9cifique pour pouvoir observer l'image du contraste des informations structurelles sp\u00e9cifiques. Un exemple typique est une structure ordonn\u00e9e comme. Le diagramme de diffraction d'\u00e9lectrons correspondant est montr\u00e9 sur la figure 2 (e) comme le diagramme de diffraction d'\u00e9lectrons de l'alliage ordonn\u00e9 Au, Cd. La structure ordonn\u00e9e est bas\u00e9e sur une structure cubique \u00e0 faces centr\u00e9es dans laquelle les atomes de Cd sont dispos\u00e9s dans l'ordre. Les diagrammes de diffraction d'\u00e9lectrons de la figure 2 (e) sont faibles, \u00e0 l'exception des r\u00e9flexions de r\u00e9seau de base des indices (020) et (008). R\u00e9flexion de r\u00e9seau ordonn\u00e9e, en utilisant la lentille d'objectif pour extraire la r\u00e9flexion de r\u00e9seau de base, en utilisant des ondes de transmission et une imagerie de r\u00e9flexion de r\u00e9seau ordonn\u00e9e, uniquement des atomes Cd avec des points clairs ou des points sombres tels que la haute r\u00e9solution comme le montre la figure 4.<\/div>\n

\"\"<\/p>\n

Comme le montre la figure 4, l'image haute r\u00e9solution repr\u00e9sent\u00e9e varie avec l'\u00e9paisseur de l'\u00e9chantillon pr\u00e8s du sous-focus optimal haute r\u00e9solution. Par cons\u00e9quent, lorsque nous obtenons une image haute r\u00e9solution, nous ne pouvons pas simplement dire ce qu'est l'image haute r\u00e9solution. Il faut d'abord faire une simulation informatique pour calculer la structure du mat\u00e9riau sous diff\u00e9rentes \u00e9paisseurs. Une image haute r\u00e9solution de la substance. Une s\u00e9rie d'images haute r\u00e9solution calcul\u00e9es par l'ordinateur est compar\u00e9e aux images haute r\u00e9solution obtenues par l'exp\u00e9rience pour d\u00e9terminer les images haute r\u00e9solution obtenues par l'exp\u00e9rience. L'image de simulation informatique repr\u00e9sent\u00e9e sur la figure 5 est compar\u00e9e \u00e0 l'image haute r\u00e9solution obtenue par l'exp\u00e9rience.<\/div>\n

\"\"<\/div>\n<\/div>\n

<\/p>","protected":false},"excerpt":{"rendered":"

High resolution transmission electron microscopy (HRTEM or HREM) is the phase contrast (the contrast of high-resolution electron microscopy images is formed by the phase difference between the synthesized projected wave and the diffracted wave, It is called phase contrast.) Microscopy, which gives an atomic arrangement of most crystalline materials. High-resolution transmission electron microscopy began in…<\/p>","protected":false},"author":1,"featured_media":0,"comment_status":"open","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"_jetpack_memberships_contains_paid_content":false,"footnotes":""},"categories":[79],"tags":[],"class_list":["post-1669","post","type-post","status-publish","format-standard","hentry","category-materials-weekly"],"jetpack_featured_media_url":"","jetpack_sharing_enabled":true,"_links":{"self":[{"href":"https:\/\/www.meetyoucarbide.com\/fr\/wp-json\/wp\/v2\/posts\/1669","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.meetyoucarbide.com\/fr\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/www.meetyoucarbide.com\/fr\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/fr\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/fr\/wp-json\/wp\/v2\/comments?post=1669"}],"version-history":[{"count":0,"href":"https:\/\/www.meetyoucarbide.com\/fr\/wp-json\/wp\/v2\/posts\/1669\/revisions"}],"wp:attachment":[{"href":"https:\/\/www.meetyoucarbide.com\/fr\/wp-json\/wp\/v2\/media?parent=1669"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/fr\/wp-json\/wp\/v2\/categories?post=1669"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/fr\/wp-json\/wp\/v2\/tags?post=1669"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}