欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

Les fissures de fatigue sont généralement le résultat de déformations plastiques périodiques dans des zones locales. La fatigue est définie comme ? une défaillance sous une charge répétée ou d'autres types de conditions de charge, et ce niveau de charge n'est pas suffisant pour provoquer une défaillance lorsqu'il n'est appliqué qu'une seule fois ?. Cette déformation plastique se produit non pas à cause de la contrainte théorique sur le composant idéal, mais parce que la surface du composant ne peut pas être réellement détectée.

August W?hler est le pionnier de la recherche sur la fatigue et propose une méthode empirique. Entre 1852 et 1870, w?hler étudie la rupture progressive des essieux ferroviaires. Il a construit le banc d'essai illustré à la figure 1. Ce banc d'essai permet à deux essieux ferroviaires d'être tournés et pliés en même temps. W?hler a tracé la relation entre la contrainte nominale et le nombre de cycles conduisant à la rupture, qui sera plus tard connue sous le nom de diagramme SN. Chaque courbe est encore appelée ligne aw ? hler. La méthode Sn est encore aujourd'hui la méthode la plus utilisée. Un exemple typique de cette courbe est illustré à la figure 1.

Statique de l'expérience d'August W?hler vous montrant comment les 4 éléments ont un impact sur la fissure de fatigue 2
Figure 1 essai de fatigue en flexion par rotation de W ? hler

Plusieurs effets peuvent être observés à travers la raie de w?hler. Tout d'abord, nous notons que la courbe SN en dessous du point de transition (environ 1000 cycles) n'est pas valide car la contrainte nominale ici est élastoplastique. Nous montrerons plus tard que la fatigue est causée par la libération d'énergie de déformation plastique de cisaillement. Par conséquent, il n'y a pas de relation linéaire entre la contrainte et la déformation avant rupture, et elle ne peut pas être utilisée. Entre le point de transition et la limite de fatigue (environ 107 cycles), l'analyse basée sur Sn est valide. Au-dessus de la limite de fatigue, la pente de la courbe diminue fortement, de sorte que cette région est souvent appelée la région de "durée de vie infinie". Mais ce n'est pas le cas. Par exemple, un alliage d'aluminium n'aura pas une durée de vie infinie, et même l'acier n'aura pas une durée de vie infinie sous une charge d'amplitude variable.

Avec l'émergence de la technologie d'amplification moderne, les gens peuvent étudier les fissures de fatigue plus en détail. Nous savons maintenant que l'émergence et la propagation des fissures de fatigue peuvent être divisées en deux étapes. Au stade initial, la fissure se propage à un angle d'environ 45 degrés par rapport à la charge appliquée (le long de la ligne de contrainte de cisaillement maximale). Après avoir traversé deux ou trois joints de grains, sa direction change et s'étend le long de la direction d'environ 90 degrés par rapport à la charge appliquée. Ces deux étapes sont appelées fissure de stade I et fissure de stade II, comme le montre la figure 2.

Statique de l'expérience d'August W?hler vous montrant comment les 4 éléments ont un impact sur la fissure de fatigue 3
Figure 2 Diagramme schématique de la croissance des fissures au stade I et au stade II

Si nous observons une fissure de stade I à fort grossissement, nous pouvons voir que la contrainte alternée conduira à la formation d'une bande de glissement continue le long du plan de cisaillement maximal. Ces bandes coulissantes glissent d'avant en arrière, un peu comme un jeu de cartes, ce qui entra?ne des surfaces inégales. La surface concave forme finalement une fissure ? bourgeonnante ?, comme le montre la figure 3. Dans la phase I, la fissure se dilatera dans ce mode jusqu'à ce qu'elle rencontre le joint de grain et s'arrêtera temporairement. Lorsque suffisamment d'énergie est appliquée aux cristaux adjacents, le processus se poursuit.

Statique de l'expérience d'August W?hler vous montrant comment les 4 éléments ont un impact sur la fissure de fatigue 4
Figure 3 Schéma de principe d'une bande de glissement continue

Après avoir traversé deux ou trois joints de grains, la direction de propagation de la fissure passe maintenant en mode phase II. A ce stade, les propriétés physiques de propagation des fissures ont changé. La fissure elle-même constitue un macro-obstacle au flux de contraintes, provoquant une forte concentration de contraintes plastiques en pointe de fissure. Comme le montre la figure 4. Il convient de noter que toutes les fissures de stade I ne se développeront pas au stade II.

Statique de l'expérience d'August W?hler vous montrant comment les 4 éléments ont un impact sur la fissure de fatigue 5
Fig4

Afin de comprendre le mécanisme de propagation de l'étape II, nous devons considérer la situation de la section de fond de fissure au cours du cycle de contrainte. Comme le montre la figure 5. Le cycle de fatigue commence lorsque la contrainte nominale est au point "a". Au fur et à mesure que l'intensité de la contrainte augmente et passe par le point "B", nous remarquons que la pointe de la fissure s'ouvre, entra?nant une déformation plastique locale par cisaillement, et la fissure s'étend jusqu'au point "C" dans le métal d'origine. Lorsque la contrainte de traction diminue par le point "d", on observe que le fond de fissure se ferme, mais la déformation plastique permanente laisse une dentelure unique, dite "ligne de coupe". Lorsque tout le cycle se termine au point "e", nous observons que la fissure a maintenant augmenté la longueur "Da" et formé des lignes de coupe supplémentaires. Il est maintenant entendu que la plage de croissance des fissures est proportionnelle à la plage de déformation élastique-plastique appliquée en pointe de fissure. Une plage de cycles plus grande peut former un Da plus grand.

Statique de l'expérience d'August W?hler vous montrant comment les 4 éléments ont un impact sur la fissure de fatigue 6
Fig. 5 Représentation schématique de la propagation des fissures au stade II

Facteurs affectant le taux de croissance des fissures de fatigue

L'influence des paramètres suivants sur le taux de croissance des fissures de fatigue est étudiée et expliquée conceptuellement?:

1Contrainte de cisaillement

D'après le diagramme, nous pouvons voir qu'une certaine "quantité" de contrainte de cisaillement est libérée lors du changement périodique de l'intensité de la contrainte nominale. Et plus la gamme de changements de contrainte est grande, plus l'énergie libérée est importante. Grace à la courbe SN illustrée à la figure 1, nous pouvons voir que la durée de vie en fatigue diminue de fa?on exponentielle avec l'augmentation de la plage de cycle de contrainte.

Statique de l'expérience d'August W?hler vous montrant comment les 4 éléments ont un impact sur la fissure de fatigue 7
Fig. 6 contrainte et déformation élastoplastique le long de la surface de glissement et à la racine de la fissure

2 stress moyen

La contrainte moyenne (contrainte résiduelle) est également un facteur affectant le taux de rupture par fatigue. Conceptuellement, si la contrainte d'expansion est appliquée à la fissure de phase II, la fissure sera forcée de s'ouvrir, de sorte que tout cycle de contrainte aura un effet plus significatif. Au contraire, si la contrainte de compression moyenne est appliquée, la fissure sera forcée de se fermer et tout cycle de contrainte doit surmonter la contrainte de précompression avant que la fissure puisse continuer à se dilater. Des concepts similaires s'appliquent également aux fissures de stade I.

3 finition de surface

étant donné que les fissures de fatigue apparaissent généralement d'abord sur la surface des composants où il y a des défauts, la qualité de la surface affectera sérieusement la probabilité d'apparition de fissures. Bien que la plupart des échantillons de test de matériaux aient une finition miroir, ils atteindront également la meilleure durée de vie à la fatigue. En fait, la plupart des composants ne peuvent pas être comparés aux échantillons, nous devons donc modifier les propriétés de fatigue. L'état de surface a un effet plus important sur la fatigue des composants soumis à des cycles de contraintes de faible amplitude.

Statique de l'expérience d'August W?hler vous montrant comment les 4 éléments ont un impact sur la fissure de fatigue 8
Figure 7 Schéma de principe de l'influence de la séquence de cycles L'influence de l'état de surface peut être exprimée par modélisation, c'est-à-dire en multipliant la courbe SN par le paramètre de correction de surface à la limite de fatigue.

4 traitement de surface

Le traitement de surface peut être utilisé pour améliorer la résistance à la fatigue des composants. Le but du traitement de surface est de former une contrainte de compression résiduelle sur la surface. Sous la période de faible amplitude, la contrainte sur la surface est évidemment faible, et maintient même l'état de compression. Par conséquent, la durée de vie en fatigue peut être considérablement prolongée. Cependant, comme nous l'avons souligné, cette situation n'est valable que pour les composants soumis à des cycles de contraintes de faible amplitude. Si une période de forte amplitude est appliquée, la précompression sera surmontée par la période de forte amplitude, et ses avantages seront perdus. Comme pour la qualité de surface, l'impact du traitement de surface peut être montré par modélisation.

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *

日韩精品中文在线观看一区-亚洲bt欧美bt精品| 亚洲黑人欧美一区二区三区-亚洲一区二区三区免费视频播放| 深夜三级福利在线播放-日韩精品一区二区在线天天狠天| 亚洲一区精品一区在线观看-日本久久久一区二区三区| 久久精品亚洲国产av久-国产精品视频一区二区免费| 国模自慰一区二区三区-日韩一级黄色片天天看| 男女做爰猛烈啪啪吃奶在线观看-人妻连裤丝袜中文字幕| 日韩高清在线观看一区二区-美产av在线免费观看| 亚洲一区精品一区在线观看-日本久久久一区二区三区| 国产美女裸露无遮挡双奶网站-国产精品色午夜视频免费看| 欧美日韩黑人在线播放-51在线精品免费视频观看| 亚洲国产日韩精品四区-dy888午夜福利精品国产97| 韩漫一区二区在线观看-精品国产免费未成女一区二区三区| 日韩精品中文在线观看一区-亚洲bt欧美bt精品| 黄色91av免费在线观看-欧美黄片一级在线观看| 熟妇勾子乱一区二区三区-欧美爱爱视频一区二区| 成人av一区二区蜜桃-亚洲色图激情人妻欧美| 少妇人妻无码久久久久久-综合图片亚洲网友自拍| 欧美精品国产系列一二三国产真人-在线观看国产午夜视频| 欧美看片一区二区三区-人妻无卡精品视频在线| 日本中文字幕永久在线人妻蜜臀-欧美一区二区的网站在线观看| 欧美日韩成人在线观看-久久五月婷婷免费视频| 天天干天天干2018-91人妻人人澡人爽精品| 精品少妇一区二区18-一区二区三区日韩在线播放| 国产黄污网站在线观看-成人av电影中文字幕| 日韩国产一区二区三区在线-精品日韩人妻少妇av| 97一区二区三区在线-欧美护士性极品hd4k| 麻豆久久国产精品亚洲-日本理论中文字幕在线视频| 国产剧情av中文字幕-五月婷婷在线手机视频| 人妻丝袜中文字幕在线视频-亚洲成av人片一区二区三区| 中文字幕亚洲综合久久最新-久久精品视频免费久久久| 亚洲欧美日韩二区三区-国产在线欧美一区日韩二区| 久久久精品欧美日韩国产-欧美精品乱码视频在线| 国产精品成人欧美激情-黄色床上完整版高清无遮挡| 五月婷婷六月在线观看视频-亚洲黑寡妇黄色一级片| 久久夜色精品亚洲噜国产av-大香蕉伊人猫咪在线观看| 国产午夜精品理论片A级漫画-久久精品国产99亚洲精品| 亚洲av成人一区国产精品网-国产偷_久久一级精品a免费| 亚洲欧洲一区二区福利-亚洲欧美日韩高清中文| 亚洲欧美精品在线一区-99热国产在线手机精品99| 久久夜色精品亚洲噜国产av-大香蕉伊人猫咪在线观看|