{"id":21359,"date":"2022-08-29T10:53:30","date_gmt":"2022-08-29T02:53:30","guid":{"rendered":"https:\/\/www.meetyoucarbide.com\/?p=21359"},"modified":"2022-08-29T10:55:44","modified_gmt":"2022-08-29T02:55:44","slug":"why-is-youngs-modulus-almost-not-affected-by-the-3-factors-material-composition-microstructure-and-processing-state","status":"publish","type":"post","link":"https:\/\/www.meetyoucarbide.com\/es\/por-que-el-modulo-de-young-casi-no-se-ve-afectado-por-los-3-factores-de-composicion-del-material-microestructura-y-estado-de-procesamiento\/","title":{"rendered":"\u00bfPor qu\u00e9 el m\u00f3dulo de Young casi no se ve afectado por los 3 factores: composici\u00f3n del material, microestructura y estado de procesamiento?"},"content":{"rendered":"

To know Young’s modulus well and answer this question on title bar, we need to think about how materials\u00a0get elasticity.<\/p>

En el caso de los materiales met\u00e1licos, sabemos que su interior est\u00e1 compuesto de \u00e1tomos, muchos \u00e1tomos est\u00e1n dispuestos regularmente para formar cristales y muchos granos se combinan para formar el metal que solemos ver.<\/p>

\u00bfLa elasticidad proviene de la interacci\u00f3n entre los granos? Obviamente no, porque tanto el monocristalino como el amorfo tienen elasticidad.<\/p>

Por lo tanto, la elasticidad probablemente proviene de la interacci\u00f3n entre los \u00e1tomos.<\/p>

In order to be as simple and convenient as possible, we try not to introduce complex concepts or mathematical formulas.\u00a0Let’s start with the\u00a0modelo diat\u00f3mico m\u00e1s simple<\/strong>.<\/p>

Diatomic model of Young’s modulus<\/h2>

Modelo diat\u00f3mico: la interacci\u00f3n entre dos \u00e1tomos se puede describir mediante una funci\u00f3n potencial (l\u00ednea roja). El eje horizontal es la distancia \u201cr\u201d entre dos \u00e1tomos, y el eje vertical es la energ\u00eda potencial U (r); La fuerza de interacci\u00f3n (l\u00ednea verde) se puede obtener derivando la funci\u00f3n potencial. Vale la pena se\u00f1alar que existe una posici\u00f3n de equilibrio r0r_ {0} entre los dos \u00e1tomos, donde la fuerza de interacci\u00f3n F = 0 y la energ\u00eda potencial es la m\u00e1s baja; En otras palabras, cuando dejes esta posici\u00f3n. No importa a la izquierda o a la derecha, habr\u00e1 una fuerza tratando de hacerlo retroceder.<\/p>

Como un resorte, existe tal posici\u00f3n de equilibrio en el estado natural. No importa si est\u00e1 apretando o estirando el resorte, que a\u00fan rebota a la posici\u00f3n original despu\u00e9s de soltar la mano.<\/p>

\u00a1Esta es la fuente de elasticidad desde el nivel at\u00f3mico!<\/p>

Por supuesto, los metales reales u otros materiales tienen muchos \u00e1tomos en su interior. Estas interacciones at\u00f3micas pueden entenderse simplemente como la superposici\u00f3n de un par de interacciones at\u00f3micas.<\/p>

\"\"<\/figure>
\"\"<\/figure>

analysis of the relationship between Young’s modulus and other parameters <\/h2>

En general, podemos simplemente suponer que esta funci\u00f3n potencial tiene la siguiente forma:<\/p>

\"\"<\/figure>
\"\"
Energ\u00eda est\u00e1tica de Lennard-Jones<\/figcaption><\/figure>

La funci\u00f3n anterior tiene cuatro par\u00e1metros variables, que son la posici\u00f3n de equilibrio R0R_{0}<\/strong>, Energ\u00eda de oferta U0U_{0}<\/strong>y par\u00e1metros N y M. Los par\u00e1metros anteriores pueden variar para diferentes tipos de \u00e1tomos.<\/p>

Ahora tomamos estos dos \u00e1tomos como un sistema independiente y los estiramos o comprimimos.<\/p>

Para cambiar la distancia entre dos \u00e1tomos cerca de la posici\u00f3n de equilibrio, la fuerza F que se debe aplicar<\/p>

\"\"<\/figure>

In order to correspond to Young’s modulus, we need to change it into \u03c3= E \u03b5 Form, divide by one r02r on both sides_ {0} ^ {2} and substituting the above formula and pretend to operate:<\/p>

\"\"<\/figure>
\"\"<\/figure>

Conclusi\u00f3n <\/h2>

That is\u00a0to say, Young’s modulus E is mainly affected by N, m, u0u_ {0}\u3001r0r_ {0}. The atomic species and temperature can affect these parameters. The influence of different atomic species is obvious, and all parameters will change. The effect of temperature seems less obvious.<\/strong><\/p>

Para observar el efecto de la temperatura, tenemos que volver a la propia curva de la funci\u00f3n potencial. Debido a que la funci\u00f3n potencial no es una curva sim\u00e9trica perfecta, cuando la temperatura aumenta, significa que el \u00e1tomo se mueve m\u00e1s vigorosamente y el rango de movimiento se vuelve m\u00e1s grande, como la expansi\u00f3n t\u00e9rmica y la contracci\u00f3n en fr\u00edo. En este momento, la posici\u00f3n de equilibrio r0r_ {0} se compensar\u00e1, como lo muestra la l\u00ednea verde en la siguiente figura.<\/strong><\/strong><\/p>

\"\"<\/figure>
\"\"
Desplazamiento de la posici\u00f3n de equilibrio din\u00e1mico<\/figcaption><\/figure>

It can be proved that atoms are always in motion. When the temperature is high, the equilibrium position r0r_ The larger {0}, the volume of the material increases and the young’s modulus decreases.<\/strong><\/strong><\/p>

Back to our initial question, the number of iron atoms in different grades of steel can account for more than 90%. Even compared with pure iron, the interaction force between atoms does not change greatly, so its young’s modulus is hardly affected by the change of alloy composition; Similarly, no matter the microstructure changes or work hardening, the rearrangement of atoms does not change the force between atoms, so they do not affect young’s modulus.<\/strong><\/strong><\/p>

In addition to Young’s modulus, physical quantities such as melting point, coefficient of thermal expansion and tensile strength of perfect crystal can also be derived from this model.<\/p>

As for the abnormal phenomenon that the young’s modulus of rubber in high elastic state increases with the increase of temperature, it is because the source of rubber elasticity is different from that of conventional materials.<\/p><\/div>","protected":false},"excerpt":{"rendered":"

To know Young’s modulus well and answer this question on title bar, we need to think about how materials\u00a0get elasticity. For metal materials, we know that their interior is composed of atoms, many atoms are arranged regularly to form crystals, and many grains are combined together to form the metal we usually see. Does elasticity…<\/p>","protected":false},"author":2,"featured_media":21370,"comment_status":"open","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"_jetpack_memberships_contains_paid_content":false,"footnotes":""},"categories":[79],"tags":[],"class_list":["post-21359","post","type-post","status-publish","format-standard","has-post-thumbnail","hentry","category-materials-weekly"],"jetpack_featured_media_url":"https:\/\/www.meetyoucarbide.com\/wp-content\/uploads\/2022\/08\/\u56fe\u724711-1.png","jetpack_sharing_enabled":true,"_links":{"self":[{"href":"https:\/\/www.meetyoucarbide.com\/es\/wp-json\/wp\/v2\/posts\/21359","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/www.meetyoucarbide.com\/es\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/www.meetyoucarbide.com\/es\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/es\/wp-json\/wp\/v2\/users\/2"}],"replies":[{"embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/es\/wp-json\/wp\/v2\/comments?post=21359"}],"version-history":[{"count":0,"href":"https:\/\/www.meetyoucarbide.com\/es\/wp-json\/wp\/v2\/posts\/21359\/revisions"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/es\/wp-json\/wp\/v2\/media\/21370"}],"wp:attachment":[{"href":"https:\/\/www.meetyoucarbide.com\/es\/wp-json\/wp\/v2\/media?parent=21359"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/es\/wp-json\/wp\/v2\/categories?post=21359"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/www.meetyoucarbide.com\/es\/wp-json\/wp\/v2\/tags?post=21359"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}