欧美人妻精品一区二区三区99,中文字幕日韩精品内射,精品国产综合成人亚洲区,久久香蕉国产线熟妇人妻

The properties of cemented carbides depend not only on the grain size of WC but also significantly on the phase composition, microstructure, and their distribution in the alloy. In actual production, due to factors such as raw materials and sintering processes, the alloy typically exhibits a complex microstructure. Therefore, this paper primarily discusses the phase composition and phase transformation process in WC-based carbides from a thermodynamic perspective, based on the W-Co-C phase diagram.

How Phase Transformations Shape the Properties of WC-based Carbides 2

Phase Composition of WC-Co Cemented Carbides

Figure 1 shows the vertical section of the W-Co-C ternary phase diagram along the Co-WC line. Taking a WC-60%Co alloy as an example:

Before liquid phase formation, the solubility of WC in Co increases with temperature.

At the eutectic temperature (~1340°C), a liquid phase with eutectic composition begins to form in the sintered body.

During sintering at 1400°C and subsequent holding, the sintered body consists of a liquid phase and residual WC solid phase.

Upon cooling, WC first precipitates from the liquid phase. Below the eutectic temperature, the WC-based carbides forms a two-phase structure of WC + γ.

How Phase Transformations Shape the Properties of WC-based Carbides 3

Figure 1: Vertical Section of the W-Co-C Ternary Phase Diagram Along the Co-WC Line

In actual production, the composition of sintered bodies often deviates from the vertical section of the Co-WC line. Consequently, the alloy is not simply composed of γ+WC two phases. As shown in Figure 2 , the carbon-rich side of the γ+WC two-phase region borders the γ+WC+C three-phase region and the γ+C two-phase region, while the carbon-deficient side borders the γ+WC+η three-phase region. Only when the carbon content of the sintered body varies strictly within the γ+WC two-phase region can the WC-based carbide avoid the formation of a third phase. Otherwise, it may lead to carbon inclusions or the formation of carbon-deficient η phase.

Since the strength of the alloy is closely related to the structure and composition of the γ phase, while the presence of η phase may degrade toughness, extensive research has been conducted on the γ and η phases, as well as phase transformation processes, in an effort to control the phase composition of WC-Co alloys and improve their overall performance.

WC-based Carbide

γ Phase Composition and Phase Transformation in WC-based carbides

As shown in Figure 2, the composition of the γ phase depends on the carbon content of the alloy, while its tungsten content increases with decreasing carbon content. When the alloy’s carbon content lies at the boundary between the γ+WC two-phase region and the γ+WC+η three-phase region, the γ phase exhibits the highest tungsten concentration. Conversely, when free carbon is present and the carbon content aligns precisely with the Co-WC cross-section (i.e., the theoretical carbon content of 6–12 wt.%), the γ phase contains the lowest tungsten concentration.

The tungsten concentration in the γ phase is also influenced by the cooling rate: slower cooling results in lower tungsten content, while rapid cooling leads to higher tungsten retention. This occurs because faster cooling suppresses the diffusion-driven precipitation of tungsten from the γ phase, locking in a non-equilibrium concentration. Additionally, higher sintering temperatures increase the tungsten solubility in the liquid phase, thereby raising the tungsten content in the γ phase at a given cooling rate. However, under sufficiently slow cooling, thermodynamic equilibrium dictates that the γ phase composition becomes independent of the sintering temperature.

In WC-Co cemented carbides, the γ phase is a cobalt-based solid solution of W and C. It exists either as discrete γ grains separated by grain boundaries or as isolated γ domains unevenly distributed within the matrix. Both γ grains and domains typically exhibit equiaxed or near-equiaxed morphologies. Notably, the volume fraction of γ domains increases with higher cobalt content in the WC-based carbide.

 

Factors Influencing γ Phase Transformation in WC-based carbides

Effect of Internal Stresses

The mismatch in thermal expansion coefficients between WC phase (384×10??/°C) and γ phase (1.25×10??/°C) generates microstructural stresses during cooling (tensile in γ phase, compressive in WC phase).

Increased cooling rate or quenching suppresses W diffusion precipitation in γ phase, elevating W concentration in room-temperature γ phase while reducing hcp γ phase content.

Cryogenic treatment (below Ms point) induces W supersaturation in γ phase, enlarging the free energy difference between fcc and hcp γ phases. Concurrently, enhanced internal stresses promote Ms transformation, markedly increasing hcp γ phase fraction—particularly pronounced in low-Co alloys.

Impact of Cobalt Content

In low-Co alloys (e.g., WC-8Co), thin γ phase layers (<0.3 μm) facilitate W diffusion to WC grains, lowering W concentration in γ phase. This raises the Ms point, favoring hcp γ phase formation during cooling and yielding higher room-temperature hcp γ phase content.

 

η Phase in WC-based carbides

Formation Mechanism and Morphology of η Phase

Due to the narrow carbon content range in the WC-γ two-phase region (Fig. 2), carbon deficiency in raw materials or sintering decarburization often leads to η phase formation (e.g., M?C-type Co?W?C, Co?W?C, and M??C-type Co?W?C). Among these, Co?W?C is most common.

Formation process

Heterogeneous nucleation: γ phase nucleates along WC-γ interfaces using WC grain surfaces as nucleation sites, facilitated by slow W diffusion from WC to γ phase and high W concentration at phase boundaries. γ phase tends to fill surface defects (high-energy sites) of WC grains.

Carbon loss and η phase precipitation

Rapid C diffusion in γ phase causes C depletion when WC dissolves, resulting in W/C ratio imbalance (room temperature [W]/[C]≈284).

During sintering (1350-1500°C), excessive C loss leads to W-rich γ phase, precipitating carbon-deficient η phase (intermediate phases like Co?W and Co?W?C form first, transforming to η phase at high temperatures).

Phase equilibrium and morphology

η phase growth consumes W and C, driving WC dissolution until equilibrium is reached.

η phase morphology is influenced by γ liquid phase flow (e.g., cross-shaped single crystals).

Key point: Carbon imbalance is the primary cause of η phase formation, with γ phase nucleation dependent on WC interfaces and high-temperature C loss driving η phase precipitation.

 

Factors Influencing η Phase Formation

Carbon content is critically important for η phase formation. In the WC+γ+η three-phase region:

Higher carbon content maintains W and C concentrations in γ phase closer to equilibrium, hindering η phase nucleation.

Mild carbon deficiency: η phase growth relies on dissolution of WC microcrystals in γ interlayers, resulting in η phases enveloping undissolved WC grains with regular geometries.

Severe carbon deficiency: Significant deviation from equilibrium W/C ratio in γ phase promotes extensive WC dissolution, leading to dispersed particulate η phase distribution.

 

Cobalt content effects

High-Co alloys contain more γ phase with better fluidity, facilitating W and C diffusion. While η phase nucleation is difficult, growth is easier, forming coarse, clustered grains.

 

WC grain size effects

Coarser WC grains promote η phase nucleation but slow growth, resulting in dispersed particulate phases.

 

Sintering process effects

Faster cooling reduces dwell time at η phase critical temperature, suppressing η phase formation.

Higher sintering temperatures increase γ liquid phase quantity, favoring coarse η phase grains, but excessive temperatures may keep γ liquid away from η phase boundaries, inhibiting η phase growth.

How Phase Transformations Shape the Properties of WC-based Carbides 4

 

Conclusions

A comprehensive understanding of the phase transformation processes during the sintering of WC-based carbides is crucial for optimizing production processes, controlling phase composition and microstructure in the alloys, thereby creating favorable conditions for manufacturing high-performance WC cemented carbides.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht ver?ffentlicht. Erforderliche Felder sind mit * markiert.

亚洲精品成人无码app| 国产乱理伦片在线观看夜| 日韩久久奶茶视频| 黑人大鸡把操逼视频| 欧美精品国产一区二区在线观看| 国产天堂网一区二区三区 | 国产精品一区二区三区在线视| 狠狠干无码日韩AV| 啊啊啊操我视频大全| 潮中文字幕在线观看| 国产欧美亚洲一区二区三| 国产天堂网一区二区三区 | 一级风流国产片a级| 手机成人三级a在线观看| 国产成人无码AV一区二区三区| 国产精品亚洲一区二区三区极品| 操批在线观看视频| 国内揄拍国内精品| 夜色成人免费观看| 中文有码无码人妻在线看| 大鸡巴抽插小穴色虐视频| 在线免费观看一区| 欧美大鸡巴操大骚逼| 美女裸胸屁股视频| 阴茎大头插少妇蜜穴视频| 日本黑鸡吧黄色录像| 五月天国产成人免费视频| 在线观看国产黄色| 91精品国产剧情欧美一区二区| 久久久精品欧美一区二区三免费| 操女人逼逼骚逼逼| 午夜精品在线视频| 午夜场射精嗯嗯啊啊视频| 三级无码日B视频| 国产高欧美性情一线在线| 小嫩骚逼操死你视频| 99久久精品国产一区二区成人了| 午夜福利在线观看aaa| 看女生b免费视频| 日本不卡高清视频在线播放| 骚逼被操视频拳交|